Reading assignment. Schroeder, section 2.6.

1 Multiplicity of the ideal gas

Our evaluation of the numbers of microstates corresponding to each macrostate
of the two-state paramagnet and the Einstein model of a crystal were based
on simple combinatorial arguments that worked well in the context of quan-
tization of the constituent states of those systems. Now we want to take a
look at the classical ideal gas, which appears to be fundamentally different
in that the states of classical particles are specified by continuous position
and momentum variables. That turns out not to be too much of a barrier, so
it is possible to calculate the probability distribution of the macrostates of
a system with continuous parameters defining the microstates—one merely
has to resort to integration instead of summation. However, the result
turns out to be inconsistent with a quantum mechanical analysis of the
system, even when the classical limit of the quantum system is taken. Es-
sentially, there is a macroscopically measurable effect due to quantization
on the microscopic level, much as the macroscopically measurable spectrum
of black-body radiation was found by Planck more than a century ago to re-
quire the assumption of microscopic quantization of electromagnetic mode
energies. Thus, we will be forced either to quantize the ideal gas or to resort
to some hand waving or some difficult mathematics in order to graft on at
the end the bits needed for consistency with quantum mechanics. Since
quantum systems are so much easier to handle statistically, we’ll take the
former approach.

Recall that the ideal gas is a collection of essentially independent particles—
if they interact with each other, other than through point collisions, then
the presence of some of the particles will influence the states of other par-
ticles. We don’t want to deal with that added complexity at this stage.
Furthermore, we’ll assume the gas is sufficiently dilute that we won’t have
to think about whether any of the particles have significant likelihood of
attempting to occupy the same single-particle state. If that were the case,
we would have to take into consideration whether the particles were bosons
or fermions, that is, whether the multiparticle states (the microstates) were
required to have wave functions that were symmetric or antisymmetric un-
der particle interchange. That’s a problem we’ll handle some time in the
future.

Finally, we’ll assume the gas is monatomic—it has no internal degrees
of freedom to be considered.

1.1 Quantization of free-particle states

This requires only the simplest of quantum mechanics, the particle-in-a-box
problem, but we’ll do it with a bit of a twist that may not be so familiar.



Let’s begin by laying out the conditions for the quantum problem of an
ideal gas:

e No external interactions—V (r) = 0
e No interparticle interactions (ideal gas, independent particles)

e “Confinement” to a large, but finite-sized box. This is traditionally
done by using an infinite potential at the boundaries of the box, lead-
ing to a boundary condition that requires the wave functions to vanish
at and outside the boundaries. For a single particle in one dimension,
this boundary condition can be written:
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assuming the box is centered at the origin and has width L, which we
take to be of macroscopic proportions. This scheme turns out to be a
bit inconvenient for us, mainly because the reflecting walls complicate
the counting of states a bit. Instead, we’ll make the walls effectively
transparent, eliminating the confining potential while using periodic
boundary conditions:
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for a cubic box of side L. Essentially, this amounts to wrapping
opposing surfaces around to meet each other. In two dimensions, this
would take a rectangular box into a torus, but in three dimensions
it would be topologically impossible to construct an actual container
that satisfies periodic boundary conditions. Nevertheless, we’ll find
it mathematically convenient.

The time-independent Schrodinger equation for a single particle then
looks like
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and its solutions are plane waves:
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where p is the particle’s momentum, E = p?/2m, and we’ve omitted the
time dependence.

Now, if the particle were completely free, p could take on any vector
value. But we are imposing periodic boundary conditions, and this restricts
the possible values of p to a discrete set. To see how this happens, consider
an arbitrary spatial translation by a multiple of the box:

R = (miX +noy +n3z)L, (5)



where the n; are integers, possibly negative. The periodic boundary condi-
tions require that
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for any choice of the n;. Thus (ignoring the normalization constant):
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This implies that
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which in turn implies that
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The only way this can hold for all values of ny, ny, and ng is if
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where the K; are integers, possibly negative. Thus, the values of p form a
discrete, cubic lattice in momentum space, with lattice constant
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This gives us the key to counting the states. For each lattice point in the
momentum-space grid, there is a momentum state that the particle could



occupy. That is, the constituent (or single-particle) states are eigenstates
of momentum, with the momentum being one of the points on that lattice.

Since we envision the gas being isolated, the energy must be fixed, which
also fixes the magnitude of the momentum of the particle:

2 hS
U:%:V(K§+K§+K§), (14)
where V = L3 is the volume of the physical container holding the particle.
This means the values of the three integers K; specifying the state of the
particle are constrained by the fixed energy in such a way that the allowed
set of points in the momentum-space lattice must lie on the surface of a
sphere of radius p = v2mU in momentum space.

Now if V', hence L, is macroscopic in size, then h/L is an extremely tiny
momentum spacing on the scale of the momenta of typical gas particles at
room temperature. So we must envision a sphere in momentum space that
encloses a huge number of finely spaced grid points representing a huge
number of states. On that scale, the points on the momentum-space lattice
look almost like a continuum. Each unit cell of the lattice, corresponding
to a single momentum state has “volume”
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in momentum space. To count the number of momenta having the allowed

energy, we merely need to compute the volume of a thin spherical shell of
radius v2mU and divide that by the volume per allowed momentum point:
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If there were two particles in one dimension, the specification of a mi-
crostate of the system would require two momentum coordinates, one for
each particle, and the possible momenta would form a square lattice in
two dimensions, one for each particle. Each lattice point then specifies the
single-particle momentum states of both particles. The “sphere” defining
the states allowed by the fixed-energy constraint would just be a circle with
radius v2mU. The combination of the momenta of the two particles into
a single two-dimensional momentum space reflects the fact that the energy
constraint applies to the sum of the energies of the particles, so that the
total can be distributed in many ways between them.

The generalization to many particles in three dimensions is then clear.
The momentum space has 3N dimensions, the volume of each unit cell in
the lattice of possible momenta is
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and the shell defining the states allowed by the energy constraint lives in
a 3N-dimensional space. For macroscopic systems N is of order 10?3, so
we’re going to have to deal with a lot of dimensions in order to count the
states.

The solution to our problem requires evaluation of the volume V), shen
of a thin shell of given radius, say r = v2mU, in a large number of di-
mensions, say n = 3N. That volume is the surface area A, snhen multiplied
by some small thickness, which we needn’t bother to specify for now. The
surface-area calculation is conveniently done by calculating the volume of
the bounding sphere V}, sphere in momentum space, then differentiating the
result with respect to radius.

The volume of an n-dimensional sphere can be calculated as follows.
First, we express the volume of interest in terms of an integral over all of
the n-dimensional space, with an integrand that is one inside the sphere
and zero outside. The condition for being inside the sphere is conveniently
expressed as
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so the integrand is conveniently expressed in terms of a unit step function:
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where

0, z<0.
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Next we reduce the calculation to that of the volume of a unit sphere
in n dimensions:
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where we've made use of the fact that 6(rz) = 6(z), and we’ve made the
substitution y; = x;/r, so that dz; = rdy;. Now the volume element d"y
in n dimensional spherical coordinates is not quite obvious, so we resort to
a little trickery to evaluate the integral. We know that the derivative of a



unit step function is just a delta function:
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and that § functions are easy to integrate. So we differentiate V,,(r) with
respect to r:
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This, by the way, is precisely the surface area we seek, so once we find the
volume V(1) of a unit sphere, it’s a simple matter to find either the surface
area or the volume of the sphere of radius r.

It’s easy to integrate on the one-dimensional variable r because of the

¢ function, so we multiply this by2 a factor that will yield easy integrals on
the x; after integration on r: e~" . Then we have
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This reduces to:
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from which we immediately obtain the volume of the unit sphere
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This gives us all we need to find the volume of the n-dimensional sphere of
radius r:

Volr)=r"V,(1) =1r"——— (28)



and the surface area:

An(r) = nr" 1V, (1)
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Exercise. Show that for the familiar cases n = 3, n = 2, and n = 1, the
expression we’ve derived for the volume of an n-dimensional sphere gives
the expected result. This may be useful:
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where I’ve used the substitution ¢ = 2 to obtain the form on the second
line.

Now let’s put our results back into the expression for the number of
allowed momenta. The number of dimensions is n = 3N, and we’ll denote
the thickness of the thin shell in the 3 N-dimensional momentum space by
€p- Then we have
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But this isn’t yet the correct number of microstates of the gas in the
macrostate characterized by the total energy U. The missing piece is that
the atoms are indistinguishable. Given any particular set of occupied single-
atom momentum states, that set being represented by a single point in the
3N-dimensional momentum-space lattice, we could perform any permuta-
tion of the N atoms among those single-particle states to obtain an identical
microstate that is represented by a different lattice point. Thus, the num-
ber of distinct microstates is the number of allowed momenta divided by
N!, the number of permutations of the atoms among those states:
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That correction factor accounts for the fact that there are N! different
points in the 3N-dimensional lattice that differ only in the interchange of
some of the particles and thus really represent the same microstate.
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