
MATH348: INTRODUCTION TO FOURIER TRANSFORMS

You pick the place and I’ll choose the time and I’ll climb The hill in my own way.

1. Introduction

If f has a Fourier series representation,

f(x) =

∞∑
n=−∞

c(ωn)eiωnx, ωn = nπ/L,(1)

then f is such that ||f ||2 = 〈f, f〉 < ∞ where 〈f, g〉 =
∫ b
a
f(x)f∗(x)dx. The

orthogonality of

B =
{
. . . , e−iω3x, e−iω2x, e−iω1x, 1, eiω1x, eiω2x, eiω3x, . . .

}
(2)

can be used to show that

1

2L

∫ b

a

|f(x)|2dx =

∞∑
n=−∞

|c(ωn)|2 ∝ Etotal,(3)

which relates the Fourier coefficients

cn = c(ωn) =
1

2L

〈
f, eiωnx

〉
,(4)

to the total single-cycle energy in f . Mathematically we might say that the set of
functions

L2(a, b) =

{
f : (a, b) ∈ C0(a, b) : ||f ||2 =

∫ b

a

|f(x)|2dx <∞

}
,(5)

where C0(a, b) is the set of piecewise continuous functions defined on (a, b), forms a
vector space under addition of functions and multiplication of functions by scalars.
Notice that this implies that points in this space must have finite collective oscillator
energy; this is what is meant by f being reasonable. Now, there are two striking
deficiencies in the Fourier series:

1. The function f , represented by a Fourier series, must be periodic or made to be
periodic by repetition of the data on the principle domain, (a, b), into the rest of
the real-line, (−∞,∞). That is, whatever a Fourier series represents is naturally
periodic.

2. This next issue is intimately tied to the previous and that is, all modes in a
Fourier series are related through their frequencies. Specifically, modes of a
Fourier series have frequencies that are integer multiples of a base frequency.
This means that though higher-frequency modes oscillate more frequently, all
modes will still repeat themselves on the same width as the fundamental mode.1

While this makes that series periodic, the deficiency I would like to point out is

Date: November 15, 2012.
1The fundamental mode is that mode with lowest non-zero frequency.
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that there are frequencies between the gaps ∆ω = ωn+1−ωn that are not being
used, i.e. have no energy.

It turns out that by forcing your way into all of the nooks and crannies within the
frequency–gaps, defined by ∆ω = ωn+1 − ωn, both limitations will be resolved.
This extension/generalization is called the Fourier transform and defines a basis for
a space of functions f may or may not be periodic.2

2. The Fourier Transform

To make use of those frequencies a Fourier series does not, we consider the limit
L → ∞. This limit implies that ∆ω → 0 and that there are no frequency gaps.
So, in this limit we should be allowed to use all frequencies ω ∈ (−∞,∞). All we
must do is take the limit of a Fourier series as the width of the principle domain
becomes infinite. Before this limit we prepare the Fourier series,

fL(x) =

∞∑
n=−∞

[
1

2L

∫ b

a

fL(v)e−iωnvdv

]
eiωnx(6)

=
1√
2π

∞∑
n=−∞

[
1√
2π

∫ b

a

fL(v)e−iωnvdv

]
eiωnx

︸ ︷︷ ︸
=F (ωn),Function of ωn

∆ω(7)

First, it is a typical mathematical convention to split the 2π, from the 2L, across
the summand and the summation.3 What is more important to notice is that the
summand is a function of ωn. With this in mind, the limit L → ∞ defines a
Riemann sum4 in the ω–variable. So, as L → ∞ we have that ∆ω → 0, ωn → ω

and

∞∑
n=−∞

F (ωn)∆ω →
∫ ∞
−∞

F (ω)dω. The only thing that remains is dealing with

the emerging improper integral,

lim
L→∞

∫ b

a

fL(v)e−iωnvdv, b− a = 2L.(9)

As L → ∞ we integrate over all of R, which increases the risk of divergence. To
avoid divergence we demand that fL be absolutely integrable on R. That is,

lim
L→∞

∫ ∞
−∞
|fL(x)|dx <∞,(10)

which implies that the total “area under the curve” that fL defines is finite, even in
the limit. Since eiωnv will only scale fL, the risky integral is finite under the limit,

2To be quite technical, the space isn’t L2 because of an assumption that must be made in the

derivation of Fourier transform. Keep an eye out!
3This is not always the case. Different texts will do this part differently. In other courses you

should consult your text to make sure you are using the same conventions.
4Recall from Calculus I the concept,

lim
N→∞

N∑
n=1

f(xn)∆x =

∫ b

a
f(x)dx,(8)

where x ∈ (a, b) and ∆x = xn+1 − xn = (b− a)/N .
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L→∞. Finally, we have that

f(x) = lim
L→∞

fL(x)(11)

=
1√
2π

∫ ∞
−∞

[
1√
2π

∫ ∞
−∞

f(v)e−iωvdv

]
eiωxdx,(12)

which we notice defines the Fourier transform pair,

f(x) =
1√
2π

∫ ∞
−∞

f̂(ω)eiωxdω,(13)

f̂(ω) =
1√
2π

∫ ∞
−∞

f(x)e−iωxdx(14)

The first of the two formulae, often called a Fourier integral representation, should
be thought of as Eq. (1) where we have allowed the use of all available frequencies.
While the function, f , need not be periodic, it can still be thought of as the inter-
ference of primitive waves eiωx of different angular–frequency. The second formula,
called the Fourier transform of f , can be thought of as a Fourier coefficient, Eq.

(4), where we have compared f to e−iωx in order to know how much amplitude, f̂ ,
is needed for each frequency, ω. With this analogy we find a similar expression for

the total “energy” of the signal f ,
∫∞
−∞ |f̂ |

2dω ∝ E.
From the Fourier transform, it is possible to get another perspective on Fourier

series. First, we have to accept the concept of a Dirac delta “function,”5 whose
properties are:

1. Ideal Localization: δ(x− x0) = 0 for all x 6= x0 ∈ R
2. Unit Area:

∫∞
−∞ δ(x− x0)dx = 1

5 It must be understood that what we write is not a function, but a distribution or generalized
function. Language aside, there is no function that will have the listed behavior, which is better

thought of as a sequence of integrals that limits to the desired formulae. Remember the concept

of demanding that each of the following curves enclose one unit of area,

but the width of the rectangles tends to zero?
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3. Ideal Measurement:
∫∞
−∞ δ(x− x0)f(x)dx = f(x0)

From this we see that F {δ(t)} = 1√
2π

and conclude that it would take an infinite

amount of energy to ideally localize, in time, a transmitted signal. Regardless, it
makes sense to pursue this idea further. Consider now the following transform,

F {cos(ω0t)} =
1

2π

∫ ∞
−∞

cos(ω0t)e
−iωtdt(15) √

2

π

∫ ∞
0

cos(ω0t) cos(ωt)dt, ω0 ∈ R.(16)

It should be clear that whatever comes out of this will be even in ω. However, due
to the bound of integration, it is unclear what comes out. We do know two things:

1. f̂ should be even, just as the input function is.
2. The input function, cos(ω0t), has two frequencies of importance, ±ω0.

Based on this we can guess the following form for f̂ ,

f̂(ω) =

√
π

2
[δ(ω − ω0) + δ(ω + ω0)](17)

and upon transformation we find that F−1
{
f̂
}

= cos(ω0t). So, using the concept

of a Dirac delta “function,” we can recover a cosine function. We can take this a
little further. Consider,

F−1
{ ∞∑
n=−∞

√
2πcnδ(ω − ωn)

}
=

∫ ∞
−∞

∞∑
n=−∞

cnδ(ω − ωn)eiωxdω(18)

=

∞∑
n=−∞

cne
iωnx,(19)

where ωn = nπ/L. This is nothing more than a complex Fourier series. So, we see
that if one ideally localizes energy to specific frequencies that are evenly–spaced
by widths ∆ω = π/L, then it is possible to recover a Fourier series from a Fourier
integral. So from this we learn, the Fourier integral/transform is a more general
object than Fourier series and the concept of a periodic function is pretty ideal.

To conclude, let’s consider a more realistic signal defined by,

f(t) =

{
t, t ∈ (−π, π)
0, t /∈ (−π, π)

(20)

The following graph shows this function (green), a ten-mode Fourier series approx-
imation to the repetition of this graph into the whole space (blue) and the function
y = x (red–dashed).
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So, if we care only about the data, f , on the 2π–width, (−π, π), then we have two
ways to represent it:

1. Fourier series representation: Here the data on (−π, π) is repeated into the rest
of the space and the familiar sawtooth wave is the result.

2. Fourier integral representation: Here the data is made to be zero outside of
(−π, π) and a single cycle of a sawtooth wave is the result.

The Fourier coefficients for the sawtooth wave are given by

c(ωn) =
i(−1)n

n
(21)

and the Fourier transform for the single cycle is given by

f̂(ω) = i

√
2

π

(−πω cos (πω) + sin (πω))

ω2
.(22)

The following graph shows the power-spectrum for both the Fourier series (blue–
dots) and Fourier transform (black–dashed).
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Notice the Fourier coefficients are ideally localized points, which correspond to
points on the graph of the Fourier transform. Altogether we conclude that a Fourier
series and coefficients, Eq. (1), (4), are really just a special case of the Fourier trans-
form pair, Eq. (13)–(14), where we have ideally localized energy/amplitude to exact
frequencies, which are multiples of some common base frequency. The outcome is
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that the graph of a Fourier series is the periodic extension of the data on (−π, π).
Both techniques enable the user to simultaneously consider the perspectives ampli-
tude as a function of space/time and amplitude/energy as a function of frequency.
The duality is important in signal analysis, wave propagation, optics and quantum
mechanics.

3. Things to do

1. Show that F {δ(x− x0)} =
e−iωx0

√
2π

where x0 ∈ R.

2. If you haven’t shown that F {A(U(t+ L)− U(t− L))} = A

√
2

π

sin(Lω)

ω
where

U is the Heavyside step-function, U(t− a) =

{
1, t > 0
0, t < 0

, then you should.

3. Using the previous problem, show that

∫ ∞
−∞

sin(Lω)

πω
dω = 1

4. Show that the Fourier transform of Eq. (20) is Eq. (22).

5. Show that F−1
{√

π

2
[δ(ω − ω0) + δ(ω + ω0)]

}
= cos(ω0t) and that

F−1
{
i

√
π

2
[δ(ω − ω0)− δ(ω + ω0)]

}
= sin(ω0t) where ω0 ∈ R.

6. Show that F
{
e−k0|x|

}
=

√
2

π

k0
k20 + ω2

where k0 ∈ R+.

7. Show that if f is even and has a Fourier transform then it’s Fourier transform
pair becomes,

f(x) =

√
2

π

∫ ∞
0

f̂(ω) cos(ωx)dω(23)

f̂(ω) =

√
2

π

∫ ∞
0

f(x) cos(ωx)dx(24)

8. Show that if f is odd and has a Fourier transform then it’s Fourier transform
pair becomes,

f(x) =

√
2

π

∫ ∞
0

f̂(ω) sin(ωx)dω(25)

f̂(ω) =

√
2

π

∫ ∞
0

f(x) sin(ωx)dx(26)

9. Show that F {f(x+ c)} = eicωF {f} where c ∈ R.

10. Show that F {f(ax)} = f̂ (ω/a) /a where a ∈ R+.
11. Show that F {f ′} = iωF {f}.

12. Show that F {f ∗ g} =
√

2πf̂(ω)ĝ(ω) where (f ∗ g)(x) =

∫ ∞
−∞

f(x− p)g(p)dp.

13. Show that F
{
e−axU(x)

}
=

1√
2π(a+ iω)

where a ∈ R+.

14. Find the steady–state solution to y′ + y = f(t) for 0 < t <∞.
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