1. In class, we proved the Triangle Inequality using an observation regarding absolute value. This time, however, we are going to take the long way to the proof. Using cases, prove

$$
\text { For all real numbers } x \text { and } y,|x+y| \leq|x|+|y|
$$

Proof. To prove the Triangle Inequality we will consider the following cases:

Case 1: $x \geq 0, y \geq 0$.
$x \geq 0, y \geq 0 \Rightarrow x+y \geq 0$
Thus, $|x+y|=x+y=|x|+|y|$.
Therefore, $|x+y| \leq|x|+|y|$.
Case 2: $x \leq 0, y \leq 0$.
$x \leq 0, y \leq 0 \Rightarrow x+y \leq 0$
Thus, $|x+y|=-(x+y)=-x+-y=|x|+|y|$.
Therefore, $|x+y| \leq|x|+|y|$.
Case 3: $x<0, y \geq 0$ and $|x|>|y|$.
Note: Without loss of generality, in the cases where x and y differ in sign, we can assume $x<0$.
Thus, $x<0$ and $|x|>|y| \Rightarrow|x+y|=-(x+y)=-x-y$. Similarly, $|x|+|y|=-x+y$. Since $y \geq 0$, we have

$$
-y<y \Rightarrow-x-y<-x+y
$$

Therefore, $|x+y| \leq|x|+|y|$.
Case 4: $x<0, y \geq 0$ and $|x|<|y|$.
Thus, $x<0$ and $|x|<|y| \Rightarrow|x+y|=x+y$. Similarly, $|x|+|y|=$ $-x+y$. Since $x<0$, we have

$$
x<-x \Rightarrow x+y<-x+y
$$

Therefore, $|x+y| \leq|x|+|y|$.
Therefore, in general, for all real numbers, x and y,

$$
|x+y| \leq|x|+|y|
$$

2. Define A as the average of the n numbers, $x_{1}, x_{2}, \ldots, x_{n}$. Prove that at least one of the x_{1}, \ldots, x_{n} is greater than or equal to A.

Proof. Proof by contradiction.
Assume that it is not the case that at least one of the x_{1}, \ldots, x_{n} is greater than or equal to A. In other words, $\forall i 1 \leq i \leq n, x_{i}<A$. By definition of the arithmetic mean

$$
A=\frac{x_{1}+\ldots+x_{n}}{n}
$$

Since $x_{i}<A$ for all $a \leq i \leq n$, we know

$$
A=\frac{x_{1}+\ldots+x_{n}}{n}<\frac{A+\ldots+A}{n}=\frac{n A}{n}=A
$$

Thus we have $A<A$, an impossibility.
Therefore, by contradiction, it must be the case that at least one x_{i} is greater than or equal to the arithmetic mean, A.
3. Let a and b be integers with $a \neq 0$. If a does not divide b, then the equation $a x^{3}+b x+(b+a)=0$ does not have a solution that is a natural number.
(Hint: It may be necessary to factor a sum of cubes. Recall that $\left.u^{3}+v^{3}=(u+v)\left(u^{2}-u v+v^{2}\right).\right)$

Proof. Proof by contrapositive.
If the equation $a x^{3}+b x+(b+a)=0$ has a natural number solution then $a \mid b$.
Let $n \in \mathbb{N}$ be a solution to the given equation

$$
\Rightarrow a n^{3}+b n+(b+a)=0
$$

Consider,

$$
\begin{aligned}
a n^{3}+b n+(b+a) & =a\left(n^{3}+\frac{b}{a} n+\left(1+\frac{b}{a}\right)\right) \\
& =a\left(\left(n^{3}+1\right)+\left(\frac{b}{a} n+\frac{b}{a}\right)\right) \\
& =a\left(\left(n^{3}+1\right)+\frac{b}{a}(n+1)\right) \\
& =a\left((n+1)\left(n^{2}-n+1\right)+\frac{b}{a}(n+1)\right) \\
& =a\left((n+1)\left(n^{2}-n+\left(1+\frac{b}{a}\right)\right)\right)
\end{aligned}
$$

Since $n \in \mathbb{N}, n+1 \neq 0 \Rightarrow\left(n^{2}-n+\left(1+\frac{b}{a}\right)\right)=0$.
Also, since $n \in \mathbb{N}, n^{2}-n+1 \in \mathbb{N}$. Thus, $\frac{b}{a}=-\left(n^{2}-n+1\right)$ is also a natural number $\Rightarrow a \mid b$.
Therefore, if a does not divide b, then the equation $a x^{3}+b x+(b+a)=0$ does not have a solution that is a natural number.
4. Prove the following proposition

For all sets A, B, and C that are subsets of some universal set, if

$$
A \cap B=A \cap C \text { and } A^{c} \cap B=A^{c} \cap C \text {, then } B=C .
$$

Proof.
$B \subseteq C$
Let $x \in B$. Then with respect to set A, we have 2 cases:
(a) $x \in A$ $x \in A \Rightarrow x \in A \cap B=A \cap C \Rightarrow x \in C$. Thus, $B \subseteq C$.
(b) $x \notin A$
$x \notin A \Rightarrow x \in A^{c} \Rightarrow x \in A^{c} \cap B=A^{c} \cap C \Rightarrow x \in C$. Thus $B \subseteq C$.
Therefore, $B \subseteq C$.
$C \subseteq B$
Similarly to that given above, let $x \in C$. With respect to set A, either $x \in A$ or $x \in A^{c}$. In either case, we can conclude that $x \in B$

Thus, since $B \subseteq C$ and $C \subseteq B, B=C$.

