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1. In class, we proved the Triangle Inequality using an observation re-
garding absolute value. This time, however, we are going to take the
long way to the proof. Using cases, prove

For all real numbers x and y, |x + y| ≤ |x|+ |y|

Proof. To prove the Triangle Inequality we will consider the following
cases:

Case 1: x ≥ 0, y ≥ 0.
x ≥ 0, y ≥ 0⇒ x + y ≥ 0
Thus, |x + y| = x + y = |x|+ |y|.
Therefore, |x + y| ≤ |x|+ |y|.

Case 2: x ≤ 0, y ≤ 0.
x ≤ 0, y ≤ 0⇒ x + y ≤ 0
Thus, |x + y| = −(x + y) = −x +−y = |x|+ |y|.
Therefore, |x + y| ≤ |x|+ |y|.

Case 3: x < 0, y ≥ 0 and |x| > |y|.
Note: Without loss of generality, in the cases where x and y differ
in sign, we can assume x < 0.
Thus, x < 0 and |x| > |y| ⇒ |x + y| = −(x + y) = −x − y.
Similarly, |x|+ |y| = −x + y. Since y ≥ 0, we have

−y < y ⇒ −x− y < −x + y.

Therefore, |x + y| ≤ |x|+ |y|.
Case 4: x < 0, y ≥ 0 and |x| < |y|.

Thus, x < 0 and |x| < |y| ⇒ |x+y| = x+y. Similarly, |x|+ |y| =
−x + y. Since x < 0, we have

x < −x⇒ x + y < −x + y.

Therefore, |x + y| ≤ |x|+ |y|.

Therefore, in general, for all real numbers, x and y,

|x + y| ≤ |x|+ |y|



2. Define A as the average of the n numbers, x1, x2, . . ., xn. Prove that
at least one of the x1,. . .,xn is greater than or equal to A.

Proof. Proof by contradiction.
Assume that it is not the case that at least one of the x1, . . ., xn is
greater than or equal to A. In other words, ∀ i 1 ≤ i ≤ n, xi < A.
By definition of the arithmetic mean
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Since xi < A for all a ≤ i ≤ n, we know

A =
x1 + . . . + xn

n
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n
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Thus we have A < A, an impossibility.
Therefore, by contradiction, it must be the case that at least one xi is
greater than or equal to the arithmetic mean, A.

3. Let a and b be integers with a 6= 0. If a does not divide b, then the
equation ax3 + bx + (b + a) = 0 does not have a solution that is a
natural number.
(Hint: It may be necessary to factor a sum of cubes. Recall that
u3 + v3 = (u + v)(u2 − uv + v2).)

Proof. Proof by contrapositive.
If the equation ax3 + bx + (b + a) = 0 has a natural number solution
then a|b.
Let n ∈ N be a solution to the given equation

⇒ an3 + bn + (b + a) = 0

Consider,
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Since n ∈ N, n + 1 6= 0⇒ (n2 − n + (1 + b
a)) = 0.

Also, since n ∈ N, n2 − n + 1 ∈ N. Thus, b
a = −(n2 − n + 1) is also a

natural number ⇒ a|b.
Therefore, if a does not divide b, then the equation ax3+bx+(b+a) = 0
does not have a solution that is a natural number.

4. Prove the following proposition
For all sets A, B, and C that are subsets of some universal set, if

A ∩B = A ∩ C and Ac ∩B = Ac ∩ C, then B = C.

Proof.

B ⊆ C
Let x ∈ B. Then with respect to set A, we have 2 cases:

(a) x ∈ A
x ∈ A⇒ x ∈ A ∩B = A ∩ C ⇒ x ∈ C.
Thus, B ⊆ C.

(b) x /∈ A
x /∈ A ⇒ x ∈ Ac ⇒ x ∈ Ac ∩ B = Ac ∩ C ⇒ x ∈ C. Thus
B ⊆ C.

Therefore, B ⊆ C.

C ⊆ B
Similarly to that given above, let x ∈ C. With respect to set A,
either x ∈ A or x ∈ Ac. In either case, we can conclude that
x ∈ B

Thus, since B ⊆ C and C ⊆ B, B = C.


