Resonators and stability

Examples of resonators

Unfolded resonator and ABCD description

Stability

Ray picture

Gaussian beam picture

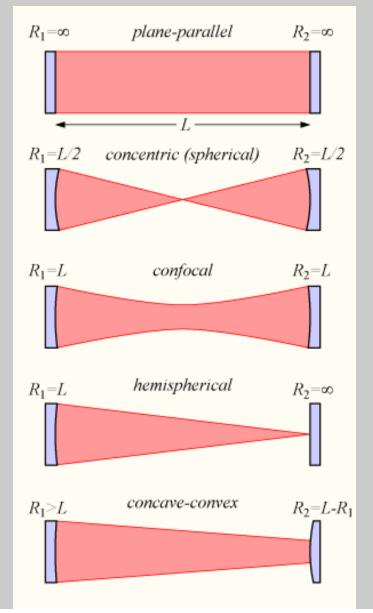
2 mirror resonators and the stability map

Analysis of resonators

beam sizes

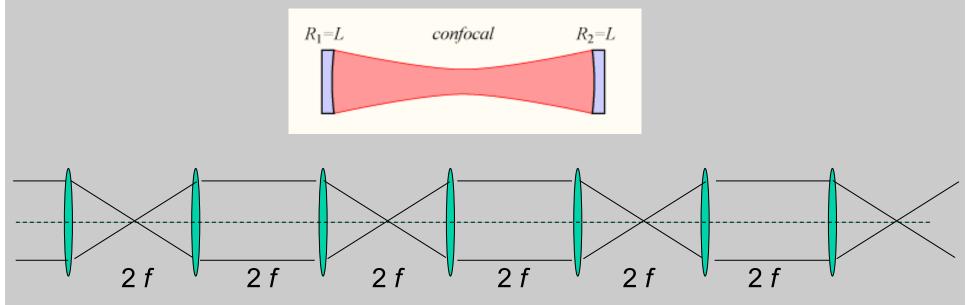
Resonators

- Resonators provide feedback for the photons to build up by passing through the gain medium
- Curved mirrors are typically used to control the beam size inside the gain medium
- Types of resonators
 - Many resonators have more than two mirrors, but most can be mapped onto a two-mirror system.



Periodic lens model

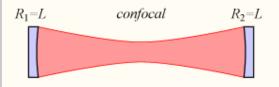
 A resonator can be "unfolded" by modeling the curved mirrors as ideal lenses



- Are there rays that will stay confined?
- If so, resonator is *stable*.

Resonator ABCD model

- Build a ABCD matrix model of the periodic lens sequence
 R₁=L confocal
 - First get a round-trip matrix



$$M_{RT}(f,L) = \begin{pmatrix} A & B \\ C & D \end{pmatrix} = M_L(f) \cdot M_T(L) \cdot M_L(f) \cdot M_T(L)$$
$$= \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

- Free to choose starting point
- Focal length **f** and mirror separation **L** can vary

$$\begin{pmatrix} r_2 \\ r'_2 \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} r_0 \\ r'_0 \end{pmatrix}$$

After 2 round trips

Resonator stability: ray picture

- Will a ray stay trapped?
- Look at whether r_n and r'_n stay finite as n goes to infinity $\begin{pmatrix} r_n \\ r'_n \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}^n \begin{pmatrix} r_0 \\ r'_0 \end{pmatrix}$
- Method: $M_{RT} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} = U \begin{pmatrix} \lambda_a & 0 \\ 0 & \lambda_b \end{pmatrix} U^{-1}$
 - Diagonalize matrix:

$$- \text{ then } M_{RT}^{n} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}^{n} = U \begin{pmatrix} \lambda_{a} & 0 \\ 0 & \lambda_{b} \end{pmatrix} U^{-1} U \begin{pmatrix} \lambda_{a} & 0 \\ 0 & \lambda_{b} \end{pmatrix} U^{-1} \cdots$$
$$= U \begin{pmatrix} \lambda_{a} & 0 \\ 0 & \lambda_{b} \end{pmatrix}^{n} U^{-1} = U \begin{pmatrix} \lambda_{a}^{n} & 0 \\ 0 & \lambda_{b}^{n} \end{pmatrix} U^{-1}$$

Stability condition

• The ray will stay trapped (stable resonator) if

$$|\lambda_a| \le 1$$
 $|\lambda_b| \le 1$ $\frac{1}{|\lambda_a|} \le 1$ $\frac{1}{|\lambda_b|} \le 1$ Reverse propagation

- Therefore matrix eigenvalues must satisfy $|\lambda_a| = |\lambda_b| = 1$
- Property of ABCD: det $M_{RT} = \lambda_a \lambda_b = 1$

 $\therefore \lambda_a = e^{i\theta}, \lambda_b = \lambda_a^{*}$

• Trace of M is invariant upon rotation of matrix:

$$\operatorname{Tr} M_{RT} = \lambda_a + \lambda_b = A + D$$
$$= e^{i\theta} + e^{-i\theta} = 2\cos\theta$$

• Finally stability condition is:

$$-1 \le \frac{A+D}{2} \le 1$$

Some properties of ABCD matrices

- 1. Determinant = 1 if start and end points are in the same medium (same refr. Index)
 - Example: $\begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}$ - Counter example: dielectric interface $\begin{pmatrix} 1 & 0 \\ 0 & n_1/n_2 \end{pmatrix}$
 - Therefore, det M = 1, but note that eigenvalues can be real <u>or</u> complex
- 2. Complex eigenvalues are of the form $e^{\pm i\theta}$
 - Outside of stability range, eigenvalues are <u>real</u>

 $\lambda_a = 1 / \lambda_b$ Tr $M_{RT} = \lambda_a + 1 / \lambda_a > 2$ if $\lambda_a > 1$

3. M is not necessarily unitary (where $M^{-1} = M^{\dagger}$)

Stability for *Gaussian* beams in resonators

- A stable resonator mode is one that repeats itself on each round trip
 - Amplitude and phase are matched $\therefore q_{n+1} = q_n$

$$q_1 = \frac{Aq_0 + B}{Cq_0 + D} = q_0 \rightarrow Aq_0 + B = q_0(Cq_0 + D)$$

$$\rightarrow 0 = Cq_0^2 + (D - A)q_0 - B$$

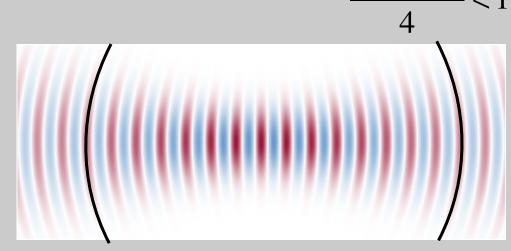
$$q_0 = \frac{(A-D)}{2C} \pm \frac{1}{2C} \sqrt{(A-D)^2 + 4BC}$$

- Since $\frac{1}{q_0} = \frac{1}{R} - i \frac{\lambda}{\pi w^2}$ q_0 must be complex (w is finite)

$$\therefore \left(A-D\right)^2 + 4BC < 0$$

Stability for Gaussian beams in resonators

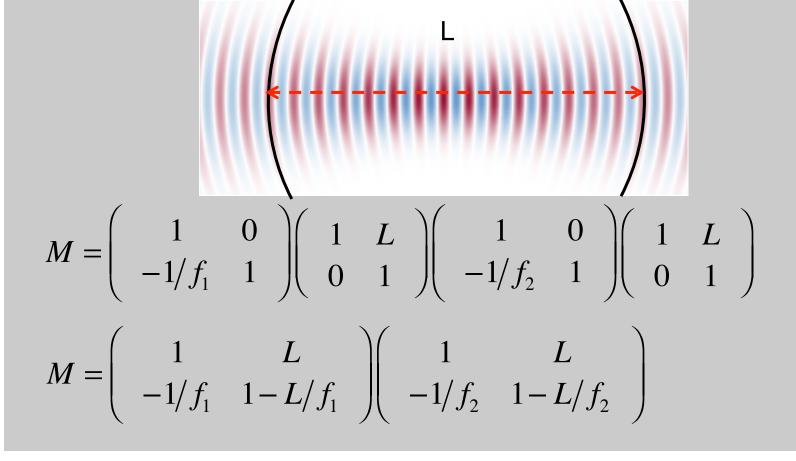
- We know: $(A-D)^2 + 4BC < 0$
- And, since det(M) = 1 AD BC = 1 $(A - D)^2 + 4BC = (A - D)^2 + 4(AD - 1)$ $= A^2 - 2AD + D^2 + 4AD - 4$ $= (A + D)^2 - 4 < 0$
- Stability condition: $(A+D)^2 < 1$



If this condition is satisfied, curvature of each end mirror matches wavefront curvature.

2 mirror cavity stability

• Important example



Stability for 2 mirror resonator

• Stability condition: $\frac{(A+D)^2}{4} < 1 \rightarrow -1 < \frac{A+D}{2} < 1$

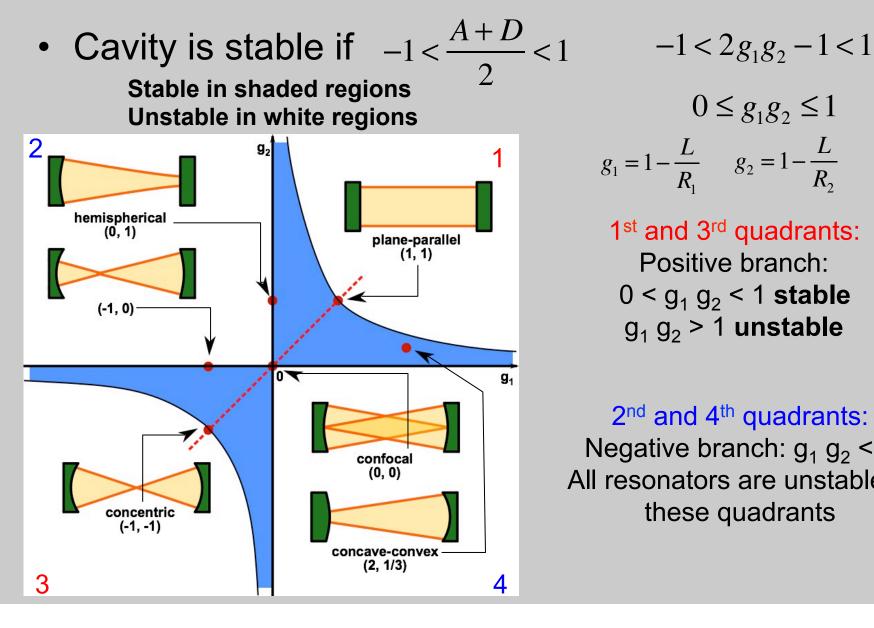
- Evaluate A and D from round-trip matrix

$$M = \begin{pmatrix} 1 & L \\ -1/f_1 & 1 - L/f_1 \end{pmatrix} \begin{pmatrix} 1 & L \\ -1/f_2 & 1 - L/f_2 \end{pmatrix}$$

 $A = 1 - L/f_2$ $D = -L/f_1 + (1 - L/f_1)(1 - L/f_2)$ $f_1 = R_1/2$ $f_2 = R_2/2$

$$\frac{A+D}{2} = \frac{1}{2} \left(1 - \frac{2L}{R_2} - \frac{2L}{R_1} + 1 - \frac{2L}{R_1} - \frac{2L}{R_2} + \frac{4L^2}{R_1R_2} \right)$$
$$= 1 - \frac{2L}{R_1} - \frac{2L}{R_2} + \frac{2L^2}{R_1R_2} = 2 \left(1 - \frac{L}{R_1} \right) \left(1 - \frac{L}{R_2} \right) - 1 \equiv 2g_1g_2 - 1$$

2 mirror stability and the stability map



 $0 \le g_1 g_2 \le 1$ $g_1 = 1 - \frac{L}{R_1}$ $g_2 = 1 - \frac{L}{R_2}$

1st and 3rd quadrants: Positive branch: $0 < g_1 g_2 < 1$ stable $g_1 g_2 > 1$ unstable

2nd and 4th quadrants: Negative branch: $g_1 g_2 < 0$ All resonators are unstable in these quadrants

Boundaries of stability $g_1 = 1 - \frac{L}{R_1}$ $g_2 = 1 - \frac{L}{R_2}$

• Easily identified stable resonators are actually at edge of stability

