6-3. The element of distance in three-dimensional space is

$$
\begin{equation*}
d S=\sqrt{d x^{2}+d y^{2}+d z^{2}} \tag{1}
\end{equation*}
$$

Suppose x, y, z depends on the parameter t and that the end points are expressed by $\left(x_{1}\left(t_{1}\right), y_{1}\left(t_{1}\right), z_{1}\left(t_{1}\right)\right),\left(x_{2}\left(t_{2}\right), y_{2}\left(t_{2}\right), z_{2}\left(t_{2}\right)\right)$. Then the total distance is

$$
\begin{equation*}
S=\int_{t_{1}}^{t_{2}} \sqrt{\left[\frac{d x}{d t}\right]^{2}+\left[\frac{d y}{d t}\right]^{2}+\left[\frac{d z}{d t}\right]^{2}} d t \tag{2}
\end{equation*}
$$

The function f is identified as

$$
\begin{equation*}
f=\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}} \tag{3}
\end{equation*}
$$

Since $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=\frac{\partial f}{\partial z}=0$, the Euler equations become

$$
\left.\begin{array}{l}
\frac{d}{d t} \frac{\partial f}{\partial \dot{x}}=0 \\
\frac{d}{d t} \frac{\partial f}{\partial \dot{y}}=0 \tag{4}\\
\frac{d}{d t} \frac{\partial f}{\partial \dot{z}}=0
\end{array}\right]
$$

from which we have

$$
\left.\begin{array}{l}
\frac{\dot{x}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}=\text { constant } \equiv C_{1} \\
\frac{\dot{y}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}=\text { constant } \equiv C_{2} \tag{5}\\
\frac{\dot{z}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}=\text { constant } \equiv C_{3}
\end{array}\right]
$$

From the combination of these equations, we have

$$
\left.\begin{array}{c}
\frac{\dot{x}}{C_{1}}=\frac{\dot{y}}{C_{2}} \tag{6}\\
\frac{\dot{y}}{C_{2}}=\frac{\dot{z}}{C_{3}}
\end{array}\right]
$$

If we integrate (6) from t_{1} to the arbitrary t, we have

$$
\left.\begin{array}{l}
\frac{x-x_{1}}{C_{1}}=\frac{y-y_{1}}{C_{2}} \\
\frac{y-y_{1}}{C_{2}}=\frac{z-z_{1}}{C_{3}} \tag{7}
\end{array}\right]
$$

On the other hand, the integration of (6) from t_{1} to t_{2} gives

$$
\left.\begin{array}{l}
\frac{x_{2}-x_{1}}{C_{1}}=\frac{y_{2}-y_{1}}{C_{2}} \tag{8}\\
\frac{y_{2}-y_{1}}{C_{2}}=\frac{z_{2}-z_{1}}{C_{3}}
\end{array}\right]
$$

from which we find the constants C_{1}, C_{2}, and C_{3}. Substituting these constants into (7), we find

$$
\begin{equation*}
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}} \tag{9}
\end{equation*}
$$

This is the equation expressing a straight line in three-dimensional space passing through the two points $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$.

6-7.

The time to travel the path shown is (cf. Example 6.2)

$$
\begin{equation*}
t=\int \frac{d s}{v}=\int \frac{\sqrt{1+y^{\prime 2}}}{v} d x \tag{1}
\end{equation*}
$$

Although we have $v=v(y)$, we only have $d v / d y \neq 0$ when $y=0$. The Euler equation tells us

$$
\begin{equation*}
\frac{d}{d x}\left[\frac{y^{\prime}}{v \sqrt{1+y^{\prime 2}}}\right]=0 \tag{2}
\end{equation*}
$$

Now use $v=c / n$ and $y^{\prime}=-\tan \theta$ to obtain

$$
\begin{equation*}
n \sin \theta=\text { const. } \tag{3}
\end{equation*}
$$

This proves the assertion. Alternatively, Fermat's principle can be proven by the method introduced in the solution of Problem 6-8.

6-12. The path length is given by

$$
\begin{equation*}
s=\int d s=\int \sqrt{1+y^{\prime 2}+z^{\prime 2}} d x \tag{1}
\end{equation*}
$$

and our equation of constraint is

$$
\begin{equation*}
g(x, y, z)=x^{2}+y^{2}+z^{2}-\rho^{2}=0 \tag{2}
\end{equation*}
$$

The Euler equations with undetermined multipliers (6.69) tell us that

$$
\begin{equation*}
\frac{d}{d x}\left[\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}+z^{\prime 2}}}\right]=\lambda \frac{d g}{d y}=2 \lambda y \tag{3}
\end{equation*}
$$

with a similar equation for z. Eliminating the factor λ, we obtain

$$
\begin{equation*}
\frac{1}{y} \frac{d}{d x}\left[\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}+z^{\prime 2}}}\right]-\frac{1}{z} \frac{d}{d x}\left[\frac{z^{\prime}}{\sqrt{1+y^{\prime 2}+z^{\prime 2}}}\right]=0 \tag{4}
\end{equation*}
$$

This simplifies to

$$
\begin{gather*}
z\left[y^{\prime \prime}\left(1+y^{\prime 2}+z^{\prime 2}\right)-y^{\prime}\left(y^{\prime} y^{\prime \prime}+z^{\prime} z^{\prime \prime}\right)\right]-y\left[z^{\prime \prime}\left(1+y^{\prime 2}+z^{\prime 2}\right)-z^{\prime}\left(y^{\prime} y^{\prime \prime}+z^{\prime} z^{\prime \prime}\right)\right]=0 \tag{5}\\
z y^{\prime \prime}+\left(y y^{\prime}+z z^{\prime}\right) z^{\prime} y^{\prime \prime}-y z^{\prime \prime}-\left(y y^{\prime}+z z^{\prime}\right) y^{\prime} z^{\prime \prime}=0 \tag{6}
\end{gather*}
$$

and using the derivative of (2),

$$
\begin{equation*}
\left(z-x z^{\prime}\right) y^{\prime \prime}=\left(y-x y^{\prime}\right) z^{\prime \prime} \tag{7}
\end{equation*}
$$

This looks to be in the simplest form we can make it, but is it a plane? Take the equation of a plane passing through the origin:

$$
\begin{equation*}
A x+B y=z \tag{8}
\end{equation*}
$$

and make it a differential equation by taking derivatives (giving $A+B y^{\prime}=z^{\prime}$ and $B y^{\prime \prime}=z^{\prime \prime}$) and eliminating the constants. The substitution yields (7) exactly. This confirms that the path must be the intersection of the sphere with a plane passing through the origin, as required.

