
6-3. The element of distance in three-dimensional space is 

  2 2 2dS dx dy dz    (1) 

Suppose x, y, z depends on the parameter t and that the end points are expressed by 

      1 1 1 1 1 1, ,x t y t z t ,       2 2 2 2 2 2, ,x t y t z t . Then the total distance is 
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The function f is identified as 
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, the Euler equations become 
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from which we have 
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From the combination of these equations, we have 
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If we integrate (6) from 1t  to the arbitrary t, we have 
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On the other hand, the integration of (6) from 1t  to 2t  gives 
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from which we find the constants 1C , 2C , and 3C . Substituting these constants into (7), we find 
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This is the equation expressing a straight line in three-dimensional space passing through the 

two points  1 1 1, ,x y z ,  2 2 2, ,x y z . 

6-7.  

   

The time to travel the path shown is (cf. Example 6.2) 
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Although we have v = v(y), we only have 0dv dy   when y = 0. The Euler equation tells us 
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Now use v c n  and y = –tan  to obtain 

  n sin  = const. (3) 

This proves the assertion. Alternatively, Fermat’s principle can be proven by the method 
introduced in the solution of Problem 6-8. 



6-12. The path length is given by 

  2 21s ds y z dx       (1) 

and our equation of constraint is 

    2 2 2 2, , 0g x y z x y z       (2) 

The Euler equations with undetermined multipliers (6.69) tell us that 
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with a similar equation for z. Eliminating the factor , we obtain 
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This simplifies to 

       2 2 2 21 1 0z y y z y y y z z y z y z z y y z z                                (5) 

      0zy yy zz z y yz yy zz y z                (6) 

and using the derivative of (2), 

     z xz y y xy z       (7) 

This looks to be in the simplest form we can make it, but is it a plane? Take the equation of a 
plane passing through the origin: 

  Ax By z   (8) 

and make it a differential equation by taking derivatives (giving A + By = z and By = z) and 
eliminating the constants. The substitution yields (7) exactly. This confirms that the path must 
be the intersection of the sphere with a plane passing through the origin, as required. 

 


