1. Goodman, problem 2-4. In part (a), you'll end up with a result that is expressed in terms of $g(x, y)$.
2. Goodman, problem 2-14. For the first plot in part c, you can use Plot3D[]
3. The propagation of Gaussian beams can be calculated by the method of propagation of the angular spectrum.
a. Starting with a Gaussian beam at a waist at $\mathrm{z}=0$,
$U(\xi, \eta)=U_{0} \exp \left[-\left(\frac{\xi^{2}+\eta^{2}}{w_{0}^{2}}\right)\right]$ calculate the angular spectrum $A\left(f_{\mathrm{x}}, f_{\mathrm{y}}, z=0\right)$ by taking the Fourier transform. Hint: use Fourier transform pairs or use Mathematica.
b. Write an expression for the angular spectrum at an arbitrary position $A\left(f_{x}, f_{y}, z\right)$. Comment on how the power angular spectrum evolves $|A|^{2}$ in free space.
c. Do the inverse transform on $A\left(f_{x}, f_{y}, z\right)$ to obtain the field $U(x, y, z)$.

Show that $U(x, y, z)=e^{i k z} \frac{1}{1+i \frac{z}{z_{0}}} \operatorname{Exp}\left[i\left(\frac{k\left(x^{2}+y^{2}\right)}{2\left(z-i z_{0}\right)}\right)\right]$.
d. Given that the complex beam parameter q can be expressed as
$q(z)=\left(z-i z_{0}\right)$, show that $U(x, y, z)=e^{i k z} \frac{q_{0}}{q(z)} \operatorname{Exp}\left[i\left(\frac{k\left(x^{2}+y^{2}\right)}{2 q(z)}\right)\right]$. From here, this expression can be cast in the more familiar expressions in terms of $w(z)$ and $R(z)$ (but you don't have to do that part).
4. Goodman problem 4-4.
5. Goodman problem 4-9.

