$$
\begin{aligned}
& \mathbf{E}_{R}=\tilde{E}_{0 R} e^{i\left(k_{R} z-\omega_{R} t\right)} \hat{n}_{R} \\
& \mathbf{E}_{T}=\tilde{E}_{0 T} e^{i\left(k_{T} z-\omega_{T} t\right)} \hat{n}_{T}
\end{aligned}
$$

For our reflected and transmitted waves, we found that $\omega_{R}=\omega_{T}=\omega_{\mathrm{I}}$. What can we now conclude about the wavelengths of the transmitted and reflected waves?
A. $\lambda_{R}=\lambda_{T}=\lambda_{I}$
B. $\lambda_{R}=\lambda_{T} \neq \lambda_{I}$
C. $\lambda_{R} \neq \lambda_{T}=\lambda_{I}$
D. $\lambda_{R}=\lambda_{\mathrm{I}} \neq \lambda_{\mathrm{T}}$
E. Need more information

## For light at normal incidence, we found:

$\mathrm{R}=\frac{\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right)^{2}}{\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)^{2}}, \quad \mathrm{~T}=\frac{4 \mathrm{n}_{1} \mathrm{n}_{2}}{\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)^{2}}$

What gives a large transmission of light at normal incidence?
A) When $v_{1} \gg v_{2}$
B) When $v_{2} \gg v_{1}$
C) When $v$ is very different in the two media
D) When $v$ is nearly the same in the two media
E) More than one of these

## For light at normal incidence, we found:

$\mathrm{R}=\frac{\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right)^{2}}{\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)^{2}}, \quad \mathrm{~T}=\frac{4 \mathrm{n}_{1} \mathrm{n}_{2}}{\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)^{2}}$

What gives a large reflection of light at normal incidence?
A) When $v_{1} \gg v_{2}$
B) When $v_{2} \gg v_{1}$
C) When $v$ is very different in the two media
D) When $v$ is nearly the same in the two media
E) More than one of these

In the case where medium 1 had a very slow wave velocity and medium 2 had a much higher wave velocity, we found that R approaches 1 and T approaches 0 . In the opposite case, where the wave velocity in medium 1 is much higher than that in 2 , we expect
A. R approaches $1, \mathrm{~T}$ approaches 0
B. R approaches $0, \mathrm{~T}$ approaches 1
C. R approaches $1 / 2, \mathrm{~T}$ approaches $1 / 2$
D. Not enough information to tell

## Reflection across contexts

Mechanical waves (strings, geological imaging)
Electronics

Quantum mechanics
Fiber optics

