Curved wavefronts

- Rays are directed normal to surfaces of constant phase
- These surfaces are the wavefronts
- Radius of curvature is approximately at the focal point

- Spherical waves are solutions to the wave equation (away from $r=0$)
$\nabla^{2} E+\frac{n^{2} \omega^{2}}{c^{2}} E=0$

$$
\begin{aligned}
& E \propto \frac{1}{r} e^{i(t k r-\omega t)} \\
& I \propto \frac{1}{r^{2}}
\end{aligned}
$$

Scalar r

+ outward
- inward

Paraxial approximations

- For rays, paraxial = small angle to optical axis
- Ray slope: $\tan \theta \approx \theta$
- For spherical waves where power is directed forward:

$$
\begin{aligned}
& e^{i k r}=\exp \left[i k \sqrt{x^{2}+y^{2}+z^{2}}\right] \\
& k \sqrt{x^{2}+y^{2}+z^{2}}=k z \sqrt{1+\frac{x^{2}+y^{2}}{z^{2}}} \approx k z\left(1+\frac{x^{2}+y^{2}}{2 z^{2}}\right) \quad \begin{array}{l}
\text { Expanding to } \\
1^{\text {st }} \text { order }
\end{array} \\
& e^{i(k r-\omega t)} \rightarrow e^{i k z} \exp \left[i\left(k \frac{x^{2}+y^{2}}{2 z}-\omega t\right)\right] \quad z \text { is radius of curvature }
\end{aligned}
$$

Wavefront = surface of constant phase $k \frac{x^{2}+y^{2}}{2 z}=\omega t$ For $\mathrm{x}, \mathrm{y}>0$, t must increase. Wave is diverging:

3D wave propagation

$$
\nabla^{2} \mathbf{E}-\frac{n_{j}^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}+\nabla_{\perp}{ }^{2} \mathbf{E}-\frac{n(\mathbf{r})^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=0
$$

- Note:

$$
\nabla_{\perp}^{2}=\partial_{x}^{2}+\partial_{y}^{2} \quad \nabla_{\perp}^{2}=\frac{1}{r} \partial_{r}\left(r \partial_{r}\right)+\frac{1}{r^{2}} \partial_{\phi}^{2}
$$

- All linear propagation effects are included in LHS: diffraction, interference, focusing...
- Previously, we assumed plane waves where transverse derivatives are zero.
- More general examples:
- Gaussian beams (including high-order)
- Waveguides
- Arbitrary propagation
- Can determine discrete solutions to linear equation (e.g. Gaussian modes, waveguide modes), then express fields in terms of those solutions.

Diffractive propagation

- Huygens' principle:
- Represent a plane wave as a superposition of source points emitting spherical waves
- Integral representation:

$$
E(x, y, z)=\frac{i}{\lambda} \iint \frac{E\left(x^{\prime}, y^{\prime}, z^{\prime}\right)}{\frac{\exp [-i k \mid \mathbf{r}-\mathbf{r}}{\begin{array}{c}
\text { Field at } \\
\text { input plane }
\end{array}} \frac{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}{\begin{array}{c}
\text { Spherical } \\
\text { wavelet }
\end{array}} . \frac{x^{\prime}}{}}
$$

This is essentially a convolution of the factor complex input field with the spherical wavelets, which are the Green's function for the wave equation

Paraxial, slowly-varying approximations

- Assume
- waves are forward-propagating:

$$
\mathbf{E}(\mathbf{r}, t)=\mathbf{A}(\mathbf{r}) e^{i\left(k z-\omega_{0} t\right)}+\text { c.c. }
$$

- Refractive index is isotropic

$$
\frac{\partial^{2}}{\partial z^{2}} \mathbf{A}+2 i k \frac{\partial}{\partial z} \mathbf{A}-k^{2} \mathbf{A}+\nabla_{\perp}{ }^{2} \mathbf{A}+\frac{n^{2} \omega_{0}{ }^{2}}{c^{2}} \mathbf{A}=0
$$

- Fast oscillating carrier terms cancel (blue)
- Slowly-varying envelope: compare red terms
- Drop $2^{\text {nd }}$ order deriv if $\frac{2 \pi}{\lambda} \frac{1}{L} A \gg \frac{1}{L^{2}} A$
- This ignores:
- Changes in z as fast as the wavlength

$$
2 i k \frac{\partial}{\partial z} \mathbf{A}+\nabla_{\perp}{ }^{2} \mathbf{A}=0
$$

- Counterpropagating waves

Fresnel diffraction integral

- Fresnel approximation (near field)
- Expand the spherical wave in paraxial approximation (in exponential)
- Let denominator be $\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \sim z-z^{\prime}=L \quad \cos \theta \simeq 1$
- Input field: $E\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=u\left(x^{\prime}, y^{\prime}, z^{\prime}\right) e^{-i k\left(z-z^{\prime}\right)}$

$$
\begin{aligned}
& u(x, y, z)=\frac{i}{\lambda L} \iint u\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \exp \left[-i k \frac{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}}{2 L}\right] d x^{\prime} d y^{\prime} \\
& u(x, y, z)=\frac{i}{\lambda L} \mathrm{e}^{-i \frac{x^{x^{2}+y^{2}} \frac{2}{2 L}}{} \iint u\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \mathrm{e}^{-i \frac{x^{\prime}+y^{\prime 2}}{2 L}} \mathrm{e}^{-i \frac{k}{L}\left(x x^{\prime}+y y^{\prime}\right)} d x^{\prime} d y^{\prime}}
\end{aligned}
$$

Fraunhofer diffraction integral

$$
u(x, y, z)=\frac{i}{\lambda L} \mathrm{e}^{-i k^{\frac{k^{2}}{2}+y^{2}}} 2 \iint u\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \mathrm{e}^{-i k^{\frac{x^{2}}{}+y^{\prime 2}}} 2 L \mathrm{e}^{-\frac{k^{k}}{L}\left(x x^{\prime}+y y^{\prime}\right)} d x^{\prime} d y^{\prime}
$$

- In the "far field", we approximate the sum of paraxial spherical waves as a sum of plane waves
- Assume field in input plane is confined to a radius a
- If $\frac{k a^{2}}{2 L}=\frac{\pi a^{2}}{\lambda} \frac{1}{L} \ll 1$ then we drop quadratic phases.
$u(x, y, z)=\frac{i}{\lambda L} \iint u\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \exp \left[-i\left(\frac{k x}{L} x^{\prime}+\frac{k y}{L} y^{\prime}\right)\right] d x^{\prime} d y^{\prime}$
- Result: far field is a Fourier transform of the input field
- "spatial frequencies"

$$
\beta_{x}=k \frac{x}{L}=k \sin \theta_{x} \quad \beta_{y}=k \frac{y}{L}=k \sin \theta_{y}
$$

Example: sum of dipole radiators

- Add fields from 10 individual sources

Near field

Talbot fringes
far field

Diffraction grating

High-density of radiators

- Combine 50 sources over same distance

Fresnel zone shows shadow boundary, diffraction fringes

Far field evolves more like a beam, with single-slit diffraction.

High density of radiators, Gaussian envelope

- Gaussian amplitude envelope eliminates diffraction fringes

Gaussian beam solution to wave equation

- Use Fresnel integral to propagate a Gaussian beam

$$
u(x, y, z)=\frac{i}{\lambda L} \mathrm{e}^{-i \frac{k^{2}+y^{2}}{2 L}} \iint e^{-\frac{x^{2}+y^{2}}{w^{2}}} \mathrm{e}^{-i k^{\frac{x^{2}+y^{2}}{2 L^{2}}}} \mathrm{e} \mathrm{e}^{-i\left(\beta_{x^{\prime}+2}+\beta_{y} y^{\prime}\right)} d x^{\prime} d y^{\prime}
$$

- Combine quadratic terms in exponent:

$$
\left(\frac{1}{w^{2}}+i \frac{k}{2 L}\right)=i \frac{k}{2}\left(\frac{1}{L}-i \frac{2}{k w^{2}}\right)=i \frac{k}{2 q}
$$

- Now integral is a F.T. of a complex Gaussian=Gaussian

$$
u(x, y, z)=\frac{i}{\lambda L} \mathrm{e}^{-i k \frac{x^{2}+y^{2}}{2 L}} \iint \mathrm{e}^{-i k^{\frac{x^{2}}{}+y^{2}}} 22 \mathrm{e}^{-i\left(\beta_{x^{\prime}}+\beta, y^{\prime}\right)} d x^{\prime} d y^{\prime}
$$

Standard form of Gaussian beam equations

$$
E(r, z, t)=A_{0} e^{-i(k z-\omega t)} \frac{w_{0}}{w(z)} e^{-\frac{r^{2}}{w^{2}(z)}} e^{-i \frac{k r^{2}}{2 R(z)}} e^{i \eta(z)}
$$

Beam maintains a Gaussian profile as it propagates

- beam radius that varies with z
- Origin of z coordinate is at the beam waist
- Rayleigh length z_{R} defines collimation distance from focal plane

$$
z_{R}=\frac{\pi w_{0}^{2}}{\lambda / n}=\frac{\text { beam area }}{\text { wavelength in medium }} \quad \begin{aligned}
b & =\text { confocal parameter } \\
& =\text { depth of focus }
\end{aligned}
$$

$$
w(z)=w_{0} \sqrt{1+\frac{z^{2}}{z_{R}^{2}}}
$$

Geometric limit for $z \gg z_{R}$

$$
w(z)=z \frac{w_{0}}{z_{R}}=z \tan \Theta
$$

Evolution of wavefronts

$$
E(r, z, t)=A_{0} e^{-i(k z-\omega t)} \frac{w_{0}}{w(z)} e^{-\frac{r^{2}}{w^{2}(z)}} e^{-i \frac{k r^{2}}{2 R(z)}} e^{i \eta(z)}
$$

- Wavefront curvature evolves with z as beam size changes

On-axis phase: Gouy phase

- Because the wavefront changes from focusing to defocusing, on-axis phase advances with z

Higher-order Hermite-Gauss modes

- The Gaussian beam is just the lowest order mode solution to the wave equation
- x, y coordinates: Hermite-Gaussian modes

$$
E(x, y, z)=A_{0} e^{-i\left(k z-\eta_{\ln }(\mathrm{z})\right)} \frac{w_{0}}{w(z)} e^{-\frac{x^{2}+y^{2}}{w^{2}(z)}} H_{l}\left(\frac{\sqrt{2} x}{w(z)}\right) H_{m}\left(\frac{\sqrt{2} y}{w(z)}\right) e^{-i \frac{k\left(x^{2}+y^{2}\right)}{2 R(z)}}
$$

$$
\eta_{l m}=(l+m+1) \tan ^{-1}\left(\frac{z}{z_{R}}\right)
$$

*

00
4
10
II
20
41I
30

Transverse profile is maintained during propagation (scaled with $w(z)$)

Hermite-Gauss functions are the same as solutions to quantum SHO

11
4

21

31

Higher-order LaGuerre-Gauss modes

- In cylindrical coordinates, alternate representation
- Azimuthal phase exp[imф] "vortex" phase

Example:
LG10 mode is a linear combination of HG10 and HG01

Complex \mathbf{q} vs standard form

$$
u(r, z)=\frac{z_{R}}{q(z)} e^{-i \frac{r^{2}}{2 q(z)}} \quad \text { with } \quad \frac{1}{q(z)}=\frac{1}{R(z)}-i \frac{\lambda}{\pi w^{2}(z)}
$$

Expand exponential:

$$
\begin{aligned}
& \exp \left[-i k \frac{r^{2}}{2 q(z)}\right]=\exp \left[-i k \frac{r^{2}}{2}\left(\frac{1}{R(z)}-i \frac{\lambda}{\pi w^{2}(z)}\right)\right] \\
& =\exp \left[-i k \frac{r^{2}}{2} \frac{1}{R(z)}-i \frac{2 \pi}{\lambda} \frac{r^{2}}{2}\left(-i \frac{\lambda}{\pi w^{2}(z)}\right)\right]=e^{-i k \frac{r^{2}}{2 R(z)}} e^{-\frac{r^{2}}{w^{2}(z)}}
\end{aligned}
$$

Expand leading inverse q :

$$
a+i b=\sqrt{a^{2}+b^{2}} e^{i \arctan (b / a)}
$$

$$
\begin{aligned}
& \frac{1}{q(z)}=\left(\frac{z}{z^{2}+z_{R}^{2}}-i \frac{z_{R}}{z^{2}+z_{R}^{2}}\right)=-i\left(\frac{z_{R}+i z}{z^{2}+z_{R}^{2}}\right)=-i\left(\frac{\sqrt{z^{2}+z_{R}^{2}}}{z^{2}+z_{R}^{2}}\right) e^{i \arctan \left(z / z_{R}\right)} \\
& =-i\left(\frac{1}{z_{R} \sqrt{1+z^{2} / z_{R}^{2}}}\right) e^{i \arctan \left(z / z_{R}\right)}=\frac{w_{0}}{i z_{R} w(z)} e^{i \eta(z)}
\end{aligned}
$$

Gaussian beams and ABCD

- General expression

$$
q_{1}=\frac{A q_{0}+B}{C q_{0}+D}
$$

$$
\frac{1}{q(z)}=\frac{1}{R(z)}-i \frac{\lambda}{\pi w^{2}(z)}
$$

- Since q is defined through its inverse, alternate:

$$
q_{1}^{-1}=\frac{C+D q_{0}^{-1}}{A+B q_{0}^{-1}}
$$

- Note that ABCD matrices are the same as for raytrace
- Application is not a multiplication like matrix.vector

Simple examples

- translation

$$
\begin{array}{rlr}
\frac{1}{q(z)} & =\frac{1}{R(z)}-i \frac{\lambda}{\pi w^{2}(z)}=\frac{1}{z\left(1+\frac{z_{R}^{2}}{z^{2}}\right)}-i \frac{\lambda}{\pi w_{0}{ }^{2}\left(1+\frac{z^{2}}{z_{R}{ }^{2}}\right)} \quad & R(z)=z(1 \\
& =\frac{1}{z_{R}\left(1+\frac{z^{2}}{z_{R}{ }^{2}}\right)}\left(z / z_{R}-i\right) & w(z)=w_{0} \\
q(z)=z+i z_{R} \rightarrow q_{1}=z_{0}+L+i z_{R}
\end{array}
$$

$$
q(z)=z_{R}\left(1+\frac{z^{2}}{z_{R}{ }^{2}}\right) \frac{1}{\left(z / z_{R}-i\right)}
$$

ABCD for translation:

$$
=z_{R}\left(1+\frac{z^{2}}{z_{R}^{2}}\right) \frac{z / z_{R}+i}{\left(1+\frac{z^{2}}{z_{R}^{2}}\right)}=z+i z_{R}
$$

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right) \\
& q_{1}=\frac{A q_{0}+B}{C q_{0}+D}=q_{0}+L
\end{aligned}
$$

Simple examples

- Focusing by a lens
- Radius of curvature is modified by lens: $\frac{1}{R^{\prime}}=\frac{1}{R}-\frac{1}{f}$

Focusing by lens induces a negative ROC

$$
\begin{aligned}
& \frac{1}{q_{1}}=\frac{1}{R}-\frac{1}{f}-i \frac{\lambda}{\pi w^{2}}=\frac{1}{q_{0}}-\frac{1}{f} \\
& q_{1}^{-1}=\frac{C+D q_{0}{ }^{-1}}{A+B q_{0}{ }^{-1}} \quad\left(\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right)
\end{aligned}
$$

Focusing a Gaussian beam by a lens

- For a beam waist at lens entrance, distance from lens to focused waist is not exactly $=f$
- Define variables:
$\mathrm{w}_{01}\left(\mathrm{w}_{02}\right)=$ input (focused) beam waist radius
$z_{R 1}\left(z_{R 2}\right)=$ rayleigh range for input (focused) beam
$z_{m}=$ distance from lens to focused beam waist
- Use Gaussian beam equations to back propagate to lens

$$
\begin{aligned}
& w_{01}=w\left(z=-z_{m}\right)=w_{02} \sqrt{1+\frac{z_{m}{ }^{2}}{z_{R 2}{ }^{2}}} \quad \rightarrow z_{R 1}=\frac{\pi w_{01}{ }^{2}}{\lambda}=z_{R 2}\left(1+\frac{z_{m}{ }^{2}}{z_{R 2}{ }^{2}}\right) \\
& R\left(z=-z_{m}\right)=-f=-z_{m}\left(1+\frac{z_{R 2}{ }^{2}}{z_{m}{ }^{2}}\right)
\end{aligned}
$$

- Divide equations:

$$
\rightarrow z_{R 1}=\frac{\pi w_{01}{ }^{2}}{\lambda}=z_{R 2}\left(1+\frac{z_{m}{ }^{2}}{z_{R 2}{ }^{2}}\right)
$$

