Curved wavefronts

- Rays are directed normal to surfaces of constant phase
 - These surfaces are the wavefronts
 - Radius of curvature is approximately at the focal point

• Spherical waves are solutions to the wave equation (away from r = 0) $\nabla^{2}E + \frac{n^{2}\omega^{2}}{c^{2}}E = 0$ $E \propto \frac{1}{r}e^{i(\pm kr - \omega t)}$ $E \propto \frac{1}{r}e^{i(\pm kr - \omega t)}$

Paraxial approximations

- For **rays**, paraxial = small angle to optical axis
 - Ray slope: $\tan \theta \approx \theta$

 $e^{ikr} = \exp\left[ik\sqrt{x^2 + y^2 + z^2}\right]$

• For **spherical waves** where power is directed forward:

$$k\sqrt{x^{2} + y^{2} + z^{2}} = kz\sqrt{1 + \frac{x^{2} + y^{2}}{z^{2}}} \approx kz\left(1 + \frac{x^{2} + y^{2}}{2z^{2}}\right) \qquad \begin{array}{l} \text{Expanding to} \\ 1^{\text{st}} \text{ order} \end{array}$$
$$e^{i(kr-\omega t)} \rightarrow e^{ikz} \exp\left[i\left(k\frac{x^{2} + y^{2}}{2z} - \omega t\right)\right] \qquad z \text{ is radius of curvature} \end{array}$$

Wavefront = surface of constant phase For x, y >0, t must increase. Wave is diverging:

$$k\frac{x^2+y^2}{2z} = \omega t$$

3D wave propagation $\nabla^{2}\mathbf{E} - \frac{n_{j}^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E} = \frac{\partial^{2}}{\partial z^{2}} \mathbf{E} + \nabla_{\perp}^{2}\mathbf{E} - \frac{n(\mathbf{r})^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E} = 0$ ote: $\nabla_{\perp}^{2} = \partial_{x}^{2} + \partial_{y}^{2}$ $\nabla_{\perp}^{2} = \frac{1}{r} \partial_{r} (r \partial_{r}) + \frac{1}{r^{2}} \partial_{\phi}^{2}$

- Note:
 - All linear propagation effects are included in LHS: diffraction, interference, focusing...
 - Previously, we assumed plane waves where transverse derivatives are zero.
- More general examples:
 - Gaussian beams (including high-order)
 - Waveguides
 - Arbitrary propagation
 - Can determine discrete solutions to linear equation (e.g. Gaussian modes, waveguide modes), then express fields in terms of those solutions.

Diffractive propagation

- Huygens' principle:
 - Represent a plane wave as a superposition of source points emitting spherical waves
- Integral representation:

Paraxial, slowly-varying approximations

- Assume
 - waves are forward-propagating: $\mathbf{E}(\mathbf{r},t) = \mathbf{A}(\mathbf{r})e^{i(kz-\omega_0 t)} + c.c.$
 - Refractive index is isotropic

$$\frac{\partial^2}{\partial z^2}\mathbf{A} + 2ik\frac{\partial}{\partial z}\mathbf{A} - k^2\mathbf{A} + \nabla_{\perp}^2\mathbf{A} + \frac{n^2\omega_0^2}{c^2}\mathbf{A} = 0$$

- Fast oscillating carrier terms cancel (blue)
- Slowly-varying envelope: compare red terms
 - Drop 2nd order deriv if $\frac{2\pi}{\lambda} \frac{1}{L} A \gg \frac{1}{L^2} A$
 - This ignores:
 - Changes in z as fast as the wavlength
 - Counterpropagating waves

$$2ik\frac{\partial}{\partial z}\mathbf{A} + \nabla_{\perp}^{2}\mathbf{A} = 0$$

Fresnel diffraction integral

- Fresnel approximation (near field)
 - Expand the spherical wave in paraxial approximation (in exponential)
 - Let denominator be $|\mathbf{r} \mathbf{r'}| \sim z z' = L$ $\cos \theta \simeq 1$
 - Input field: $E(x',y',z') = u(x',y',z')e^{-ik(z-z')}$

$$u(x,y,z) = \frac{i}{\lambda L} \iint u(x',y',z') \exp\left[-ik \frac{(x-x')^2 + (y-y')^2}{2L}\right] dx' dy'$$

$$u(x,y,z) = \frac{i}{\lambda L} e^{-ik\frac{x^2+y^2}{2L}} \iint u(x',y',z') e^{-ik\frac{x'^2+y'^2}{2L}} e^{-i\frac{k}{L}(xx'+yy')} dx' dy'$$

Fraunhofer diffraction integral

$$u(x,y,z) = \frac{i}{\lambda L} e^{-ik\frac{x^2 + y^2}{2L}} \iint u(x',y',z') e^{-ik\frac{x'^2 + y'^2}{2L}} e^{-i\frac{k}{L}(xx'+yy')} dx' dy'$$

- In the "far field", we approximate the sum of paraxial spherical waves as a sum of plane waves
 - Assume field in input plane is confined to a radius a
 - If $\frac{ka^2}{2L} = \frac{\pi a^2}{\lambda} \frac{1}{L} \ll 1$ then we drop quadratic phases.

$$u(x,y,z) = \frac{i}{\lambda L} \iint u(x',y',z') \exp\left[-i\left(\frac{kx}{L}x' + \frac{ky}{L}y'\right)\right] dx' dy'$$

- Result: far field is a Fourier transform of the input field

- "spatial frequencies"
$$\beta_x = k \frac{x}{L} = k \sin \theta_x$$
 $\beta_y = k \frac{y}{L} = k \sin \theta_y$

Example: sum of dipole radiators

Add fields from 10 individual sources
 Near field far field

High-density of radiators

Combine 50 sources over same distance

Fresnel zone shows shadow boundary, diffraction fringes

Far field evolves more like a beam, with single-slit diffraction.

High density of radiators, Gaussian envelope

 Gaussian amplitude envelope eliminates diffraction fringes

Beam smoothly spreads out with distance

Gaussian beam solution to wave equation

 Use Fresnel integral to propagate a Gaussian beam

$$u(x,y,z) = \frac{i}{\lambda L} e^{-ik\frac{x^2+y^2}{2L}} \iint e^{-\frac{x'^2+y'^2}{w^2}} e^{-ik\frac{x'^2+y'^2}{2L}} e^{-i(\beta_x x' + \beta_y y')} dx' dy'$$

Combine quadratic terms in exponent:

 $\left(\frac{1}{w^2} + i\frac{k}{2L}\right) = i\frac{k}{2}\left(\frac{1}{L} - i\frac{2}{kw^2}\right) = i\frac{k}{2q}$

- Now integral is a F.T. of a complex Gaussian=Gaussian

$$u(x,y,z) = \frac{i}{\lambda L} e^{-ik\frac{x^2 + y^2}{2L}} \iint e^{-ik\frac{x'^2 + y'^2}{2q}} e^{-i(\beta_x x' + \beta_y y')} dx' dy'$$

Standard form of Gaussian beam equations

$$E(r,z,t) = A_0 e^{-i(kz-\omega t)} \frac{W_0}{W(z)} e^{-\frac{r^2}{w^2(z)}} e^{-i\frac{kr^2}{2R(z)}} e^{i\eta(z)}$$

Beam maintains a Gaussian profile as it propagates

- beam radius that varies with z
- Origin of z coordinate is at the beam waist
- Rayleigh length z_R defines collimation distance from focal plane

Evolution of wavefronts

$$E(r,z,t) = A_0 e^{-i(kz-\omega t)} \frac{W_0}{w(z)} e^{-\frac{r^2}{w^2(z)}} e^{-i\frac{kr^2}{2R(z)}} e^{i\eta(z)}$$

• Wavefront curvature evolves with z as beam size changes

On-axis phase: Gouy phase
$$E(r,z,t) = A_0 e^{-i(kz-\eta(z)-\omega t)} \frac{W_0}{W(z)} e^{-\frac{r^2}{w^2(z)}} e^{-i\frac{kr^2}{2R(z)}}$$

 Because the wavefront changes from focusing to defocusing, on-axis phase advances with z

Higher-order Hermite-Gauss modes

- The Gaussian beam is just the lowest order mode solution to the wave equation
- x, y coordinates: Hermite-Gaussian modes

$$E(x,y,z) = A_0 e^{-i(kz - \eta_{lm}(z))} \frac{w_0}{w(z)} e^{-\frac{x^2 + y^2}{w^2(z)}} H_l\left(\frac{\sqrt{2}x}{w(z)}\right) H_m\left(\frac{\sqrt{2}y}{w(z)}\right) e^{-i\frac{k(x^2 + y^2)}{2R(z)}}$$

$$\eta_{lm} = (l+m+1)\tan^{-1}\left(\frac{z}{z_R}\right)$$

Transverse profile is maintained during propagation (scaled with w(z))

Hermite-Gauss functions are the same as solutions to quantum SHO

Higher-order LaGuerre-Gauss modes

- In cylindrical coordinates, alternate representation
- Azimuthal phase $exp[im\phi]$ "vortex" phase

Example: LG10 mode is a linear combination of HG10 and HG01

Complex q vs standard form

$$u(r,z) = \frac{z_R}{q(z)} e^{-ik\frac{r^2}{2q(z)}}$$
 with $\frac{1}{q(z)} = \frac{1}{R(z)} - i\frac{\lambda}{\pi w^2(z)}$

Expand exponential:

$$\exp\left[-ik\frac{r^2}{2q(z)}\right] = \exp\left[-ik\frac{r^2}{2}\left(\frac{1}{R(z)} - i\frac{\lambda}{\pi w^2(z)}\right)\right]$$
$$= \exp\left[-ik\frac{r^2}{2}\frac{1}{R(z)} - i\frac{2\pi}{\lambda}\frac{r^2}{2}\left(-i\frac{\lambda}{\pi w^2(z)}\right)\right] = e^{-ik\frac{r^2}{2R(z)}}e^{-\frac{r^2}{w^2(z)}}$$

$$a+ib = \sqrt{a^2+b^2}e^{i\arctan(b/a)}$$

Expand leading inverse q:

$$\frac{1}{q(z)} = \left(\frac{z}{z^2 + z_R^2} - i\frac{z_R}{z^2 + z_R^2}\right) = -i\left(\frac{z_R + iz}{z^2 + z_R^2}\right) = -i\left(\frac{\sqrt{z^2 + z_R^2}}{z^2 + z_R^2}\right) e^{i\arctan(z/z_R)}$$

$$= -i\left(\frac{1}{z_R\sqrt{1 + z^2/z_R^2}}\right) e^{i\arctan(z/z_R)} = \frac{w_0}{iz_Rw(z)} e^{i\eta(z)}$$

Gaussian beams and ABCD

General expression

$$q_1 = \frac{Aq_0 + B}{Cq_0 + D}$$
 $\frac{1}{q(z)} = \frac{1}{R(z)} - i\frac{\lambda}{\pi w^2(z)}$

Since q is defined through its inverse, alternate:

$$q_1^{-1} = \frac{C + Dq_0^{-1}}{A + Bq_0^{-1}}$$

- Note that ABCD matrices are the same as for raytrace
- Application is **not** a multiplication like matrix.vector

Simple examples

translation

$$\frac{1}{q(z)} = \frac{1}{R(z)} - i\frac{\lambda}{\pi w^{2}(z)} = \frac{1}{z\left(1 + \frac{z_{R}^{2}}{z^{2}}\right)} - i\frac{\lambda}{\pi w_{0}^{2}\left(1 + \frac{z^{2}}{z_{R}^{2}}\right)}$$
$$= \frac{1}{z_{R}\left(1 + \frac{z^{2}}{z_{R}^{2}}\right)} (z/z_{R} - i)$$
$$q(z) = z_{R}\left(1 + \frac{z^{2}}{z_{R}^{2}}\right) \frac{1}{(z/z_{R} - i)}$$
$$q(z) = z + iz_{R}$$
$$q(z) = z + iz_{R}$$
$$\left(1 + \frac{z^{2}}{z_{R}^{2}}\right) \frac{z/z_{R} + i}{(1 + \frac{z^{2}}{z_{R}^{2}})} = z + iz_{R}$$
$$q(z) = z + iz_{R}$$
$$\left(1 + \frac{z^{2}}{z_{R}^{2}}\right) \frac{z/z_{R} + i}{(1 + \frac{z^{2}}{z_{R}^{2}})} = z + iz_{R}$$

$$R(z) = z \left(1 + \frac{z_R^2}{z^2} \right)$$
$$w(z) = w_0 \sqrt{1 + \frac{z^2}{z_R^2}}$$

$$q(z) = z + iz_R \rightarrow q_1 = z_0 + L + iz_R$$

D for translation:

$$\left(\begin{array}{cc}1 & L\\0 & 1\end{array}\right)$$

$$q_1 = \frac{Aq_0 + B}{Cq_0 + D} = q_0 + L$$

Simple examples

- Focusing by a lens
 - Radius of curvature is modified by lens: $\frac{1}{R'} = \frac{1}{R} \frac{1}{f}$

Focusing by lens induces a negative ROC

Focusing a Gaussian beam by a lens

- For a beam waist at lens entrance, distance from lens to focused waist is not exactly = f
- Define variables:

 w_{01} (w_{02}) = input (focused) beam waist radius $z_{R1}(z_{R2})$ = rayleigh range for input (focused) beam z_m = distance from lens to focused beam waist

Use Gaussian beam equations to back propagate to lens

$$w_{01} = w(z = -z_m) = w_{02}\sqrt{1 + \frac{z_m^2}{z_{R2}^2}} \qquad \rightarrow z_{R1} = \frac{\pi w_{01}^2}{\lambda} = z_{R2}\left(1 + \frac{z_m^2}{z_{R2}^2}\right)$$

$$R(z = -z_m) = -f = -z_m\left(1 + \frac{z_{R2}^2}{z_m^2}\right)$$

Divide equations: $\rightarrow z_{R1} = \frac{\pi w_{01}^2}{\lambda} = z_{R2}\left(1 + \frac{z_m^2}{z_{R2}^2}\right)$

λ