Curved wavefronts

» Rays are directed normal to surfaces of constant phase
— These surfaces are the wavefronts
— Radius of curvature is approximately at the focal point

» Spherical waves are solutions to the wave equation (away
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Paraxial approximations

* For rays, paraxial = small angle to optical axis
— Ray slope: tan0 =0

* For spherical waves where power is directed forward:
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3D wave propagation
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— All linear propagation effects are included in LHS:

diffraction, interference, focusing...

— Previously, we assumed plane waves where transverse

derivatives are zero.

* More general examples:
— Gaussian beams (including high-order)
— Waveguides
— Arbitrary propagation

— Can determine discrete solutions to linear equation (e.g.
Gaussian modes, waveguide modes), then express fields

in terms of those solutions.




Diffractive propagation

* Huygens’ principle:
— Represent a plane wave as a superposition of source
points emitting spherical waves
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Field at Spherical

input plane wavelet

This is essentially a convolution of the
complex input field with the spherical
wavelets, which are the Green’s
function for the wave equation
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Paraxial, slowly-varying approximations

 Assume
— waves are forward-propagating:
E(r,t)= A(r)ei(kz_wot) +c.c.
— Refractive index is isotropic
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— Fast oscillating carrier terms cancel (blue)

» Slowly-varying envelope: compare red terms
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« Counterpropagating waves



Fresnel diffraction integral

* Fresnel approximation (near field)

— Expand the spherical wave in paraxial approximation
(in exponential)

— Let denominator be

— Input field: E(x",y".z")=u(x’,y’,z’)e )
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Fraunhofer diffraction integral
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* |n the “far field”, we approximate the sum of
paraxial spherical waves as a sum of plane waves
— Assume field in input plane is confined to a radius a
—If ka® ma’ 1 then we drop quadratic phases.
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— Result: far field is a Fourier transform of the input field

— “spatial frequencies” B = k> = ksin® B, = k= =ksin@
X L - Y L v



Example: sum of dipole radiators

 Add fields from 10 individual sources
Near field far field
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High-density of radiators

Combine 50 sources over same distance
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Fresnel zone shows shadow Far field evolves more like a
boundary, diffraction fringes beam, with single-slit

diffraction.



High density of radiators, Gaussian

envelope

« Gaussian amplitude envelope eliminates
diffraction fringes
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Gaussian beam solution to wave
equation

« Use Fresnel integral to propagate a Gaussian
beam
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— Now integral is a F.T. of a complex Gaussian=Gaussian
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Standard form of Gaussian beam equations

Wy w(z)
w(z)

Beam maintains a Gaussian profile as it propagates

- beam radius that varies with z

- Origin of z coordinate is at the beam waist

- Rayleigh length z, defines collimation distance from focal plane
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Evolution of wavefronts
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On-axis phase: Gouy phase
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« Because the wavefront changes from focusing to
defocusing, on-axis phase advances with z
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Higher-order Hermite-Gauss modes

— The Gaussian beam is just the lowest order mode
solution to the wave equation

— X, y coordinates: Hermite-Gaussian modes
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Transverse profile is maintained
during propagation (scaled with

w(z) )

Hermite-Gauss functions are the
same as solutions to quantum SHO




Higher-order LaGuerre-Gauss modes

— In cylindrical coordinates, alternate representation
— Azimuthal phase exp|im¢| “vortex” phase

Example:

LG10 mode is a linear
combination of HG10
and HGO1




Complex g vs standard form
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Gaussian beams and ABCD

* (General expression
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— Since q is defined through its inverse, alternate:
4 C+Dg,”
A+Bq0_1
— Note that ABCD matrices are the same as for raytrace
— Application is not a multiplication like matrix.vector
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Simple examples

 translation
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Simple examples

* Focusing by a lens |
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— Radius of curvature is modified by lens: rae R 7
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Focusing a Gaussian beam by a lens

For a beam waist at lens entrance, distance from lens to

focused waist is not exactly = f
Define variables:
Wy1 (Wg, ) = input (focused) beam waist radius
Zr4 (zro) = rayleigh range for input (focused) beam
z., = distance from lens to focused beam waist

Use Gaussian beam equations to back propagate to lens
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