
Curved wavefronts 
•  Rays are directed normal to surfaces of constant phase 

–  These surfaces are the wavefronts 
–  Radius of curvature is approximately at the focal point 

•  Spherical waves are solutions to the wave equation (away 
from r = 0) 
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Paraxial approximations 
•  For rays, paraxial = small angle to optical axis 

–  Ray slope: 

•  For spherical waves where power is directed forward: 
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3D wave propagation 

•  Note:  
–  All linear propagation effects are included in LHS: 

diffraction, interference, focusing… 
–  Previously, we assumed plane waves where transverse 

derivatives are zero.  
•  More general examples:  

–  Gaussian beams (including high-order) 
–  Waveguides 
–  Arbitrary propagation 
–  Can determine discrete solutions to linear equation (e.g. 

Gaussian modes, waveguide modes), then express fields 
in terms of those solutions. 
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Diffractive propagation 
•  Huygens’ principle:  

–  Represent a plane wave as a superposition of source 
points emitting spherical waves 

•  Integral representation:  
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Paraxial, slowly-varying approximations 
•  Assume 

–   waves are forward-propagating: 

–  Refractive index is isotropic 

 
–  Fast oscillating carrier terms cancel (blue) 

•  Slowly-varying envelope: compare red terms 
–  Drop 2nd order deriv if 

–  This ignores: 
•  Changes in z as fast as the wavlength 
•  Counterpropagating waves 
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Fresnel diffraction integral 
•  Fresnel approximation (near field) 

–  Expand the spherical wave in paraxial approximation 
(in exponential) 

–  Let denominator be 
–  Input field: 
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Fraunhofer diffraction integral 

•  In the “far field”, we approximate the sum of 
paraxial spherical waves as a sum of plane waves 
–  Assume field in input plane is confined to a radius a 
–  If    then we drop quadratic phases. 

–  Result: far field is a Fourier transform of the input field 
–  “spatial frequencies”   
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Example: sum of dipole radiators 
•  Add fields from 10 individual sources 

 Near field     far field 

Talbot fringes Diffraction grating 



High-density of radiators 
•  Combine 50 sources over same distance 

Fresnel zone shows shadow 
boundary, diffraction fringes 

Far field evolves more like a 
beam, with single-slit 
diffraction. 



High density of radiators, Gaussian 
envelope 

•  Gaussian amplitude envelope eliminates 
diffraction fringes 

Beam smoothly spreads 
out with distance 



Gaussian beam solution to wave 
equation 

•  Use Fresnel integral to propagate a Gaussian 
beam 

–  Combine quadratic terms in exponent:  

–  Now integral is a F.T. of a complex Gaussian=Gaussian 
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Standard form of Gaussian beam equations 
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Beam maintains a Gaussian profile as it propagates 
-  beam radius that varies with z 
-  Origin of z coordinate is at the beam waist 
-  Rayleigh length zR defines collimation distance from focal plane   

Geometric limit for z>>zR 
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Evolution of wavefronts 

•  Wavefront curvature evolves with z as beam size changes 
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On-axis phase: Gouy phase 

•  Because the wavefront changes from focusing to 
defocusing, on-axis phase advances with z 
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Higher-order Hermite-Gauss modes 
–  The Gaussian beam is just the lowest order mode 

solution to the wave equation 
–  x, y coordinates: Hermite-Gaussian modes 
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Hermite-Gauss functions are the 
same as solutions to quantum SHO 

Transverse profile is maintained 
during propagation (scaled with 
w(z) ) 



Higher-order LaGuerre-Gauss modes 
–  In cylindrical coordinates, alternate representation 
–  Azimuthal phase   “vortex” phase  

Example:  
LG10 mode is a linear 
combination of HG10 
and HG01 

exp imφ[ ]



Complex q vs standard form 
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Expand exponential: 
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Gaussian beams and ABCD 
•  General expression 

–  Since q is defined through its inverse, alternate: 

–  Note that ABCD matrices are the same as for raytrace 
–  Application is not a multiplication like matrix.vector 
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Simple examples 
•  translation 
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Simple examples 
•  Focusing by a lens 

–  Radius of curvature is modified by lens: 
1
′R
= 1
R
− 1
f

1
q1

= 1
R
− 1
f
− i λ

π w2 =
1
q0

− 1
f

q1
−1 = C + Dq0

−1

A + Bq0
−1

1 0
−1 f 1

⎛

⎝
⎜

⎞

⎠
⎟

Focusing by lens 
induces a negative 
ROC 



Focusing a Gaussian beam by a lens 
•  For a beam waist at lens entrance, distance from lens to 

focused waist is not exactly = f 
•  Define variables: 

w01 (w02 ) = input (focused) beam waist radius 
zR1 (zR2) = rayleigh range for input (focused) beam 
zm =  distance from lens to focused beam waist 

•  Use Gaussian beam equations to back propagate to lens 

•  Divide equations: 
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