In order to receive full credit, SHOW ALL YOUR WORK. Full credit will be given only if all reasoning and work is provided. Please enclose your final answers in boxes.

1. (10 Points)
a. Suppose \mathbf{A} is invertible. Explain why $\mathbf{A}^{T} \mathbf{A}$ is invertible and show that $\mathbf{A}^{-1}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T}$.
b. Assume that for $\mathbf{A}_{n \times n}$ and some $\mathbf{b} \in \mathbb{R}^{n}$ the equation $\mathbf{A x}=\mathbf{b}$ has non-unique solutions. List three properties of the matrix \mathbf{A}.
2. (10 Points) Calculate the determinant of \mathbf{A}.

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 1 & 1 \\
3 & 4 & 2
\end{array}\right]
$$

3. (10 Points) Determine the LU-decomposition of \mathbf{A}.

$$
\mathbf{A}=\left[\begin{array}{rrr}
3 & -6 & 3 \\
6 & -7 & 2 \\
-1 & 7 & 0
\end{array}\right]
$$

4. (10 Points) Given that the points,

$$
p_{1}=(0,0), \quad p_{2}=(-1,3), \quad p_{3}=(4,-5), \quad p_{4}=(3,-2),
$$

are the vertices of a parallelogram. Determine the area of this parallelogram by calculating the determinant of the appropriate matrix \mathbf{A}.

