
MATH348: SPRING 2012 - HOMEWORK 7

LINEAR ALGEBRA AND ITS APPLICATIONS

So now, less than five years later, you can go up on a steep hill in Las Vegas and look west, and
with the right kind of eyes you can almost see the high water mark – that place where the wave

finally broke and rolled back

Abstract. Broadly speaking, linear algebra is the study of finite dimensional

vector spaces, which is to say that a primary goal is to find the coefficients in

the linear combination,
n∑

i=1

xiai, xi ∈ R, ai ∈ Rm,(1)

where the upper bound of the sum is decidedly finite as opposed to the case of
Fourier series or solutions to linear PDE. This topic has been studied, in one

form or another, throughout human history but the context of vector spaces

began in the late 1800’s and from this the theory of linear transformations
of finite-dimensional vector spaces emerged at the turn of the century. As

opposed to the topics we have considered thus far, the theory of linear algebra

is about as complete as one could hope. That is, we know about as much as
there is to know, algebraically and geometrically, about finitely many linear

objects of finitely many unknowns. For our study we consider the following

algorithms of linear algebra:
1. Row operations and the row reduction algorithm

2. Matrix multiplication

3. Determinants of square matrices
It turns out that you have seen each of these algorithms in the math you have

studied thus far. The point of linear algebra is to generalize them to arbitrary
but finite data.0 It turns out that one can study many equations of linear

algebra by understanding these two algorithms. Namely, from these methods

we will be able to understand:
1. Whether a point in space b can be written as the linear combination of

directions ai for i = 1, 2, 3, . . . , n.

2. Whether a set of flat things simultaneously intersect in space and if so,
at what points?

3. Whether the solution to the matrix equation Ax = b exists and is unique.

4. Whether the matrix An×n is invertible and what the inverse is.
5. What are the special vectors x ∈ Rn such that they are only scaled by

the matrix multiplication Ax = λx by a factor of λ ∈ C.

6. Knowing the eigenvalues and eigenvectors of a system, when is it possible
to write the system in the diagonalized form A = PDP−1?

There are, of course, more problems in linear algebra but these are those
accessible in our time frame with the previous algorithms. The following list

discusses how these problems are related to the previous topics.
P1. This problem is a practice in row-reduction and the conclusions one can

draw from it. I ask you to take define an augmented matrix and from
its row-echelon form, discuss the geometry of the linear system and the

linear combination.
P2. This problem is a practice in matrix products and gives a little insight

into the meaning of certain matrix multiplications through the eyes of
linear transformations of the underlying vector space.

P3. This problem continues the previous discussion with the addition of ma-
trix inversion and determinants.

P4. This problem joins the previous calculations from the point of view of
an eigenvalue/eigenvector problem defined by Ax = λx.

P5. It is interesting to note that a symmetric matrix has a particularly nice
diagonalized form.

Date: April 25, 2012.
0For comfort we note that the three algorithms correspond to:
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1. Solutions Sets to Linear Systems of Algebraic Equations

Given,

A1 =

 1 −3 0
−1 1 5

0 1 1

 , A2 =

 6 18 −4
−1 −3 8

5 15 −9

 , A3 =

 1 2 1
0 1 −1
1 0 3

 , A4 =

 1 2 3
2 4 6
3 6 9

 ,
b1 =

 5
2
0

 , b2 =

 20
4

11

 , b3 =

 4
1
0

 , b4 =

 10
20
30

 ,
A5 =

 5 3
−4 7

9 −2

 , b5 =

 22
20
15

 ,
A6 =

 5 3
−4 7

9 −2

 , b6 =

 22
20
15

 ,
v1 =

 1
−1
−3

 , v2 =

 −5
7
8

 , v3 =

 1
1
h

 ,
w1 =

 1
−3

2

 , w2 =

 −3
9
−6

 , w3 =

 5
−7
h

 ,
x1 =

 1
0
−1

 , x2 =

 2
1
3

 , x3 =

 4
2
6

 , y =

 3
1
2

 ,
A7 =

 −8 −2 −9
6 4 8
4 0 4

 , b7 =

 2
1
−2

 .
1.1. Algebra. Find all solutions to Aix = bi for i = 1, 2, 3, 4, 5, 6, 7.

1.2. Geometry. Describe or plot the geometry formed by the linear systems and
their solution sets.

1.3. Linear Combinations. Which of the vectors, bi for i = 1, 2, 3, 4, 5, 6, 7, can
be written as a linear combination of the columns of Ai for i = 1, 2, 3, 4, 5, 6, 7.

1.4. Extra Credit: Linear Dependence. Determine all values for h such that
S = {v1,v2,v3} forms a linearly dependent set.1

1.5. Extra Credit: Linear Independence. Determine all values for h such that
S = {w1,w2,w3} forms a linearly independent set.

1.6. Extra Credit: Spanning Sets. How many vectors are in S = {x1,x2,x3}?
How many vectors are in span(S)? Is y ∈span(S)?2

i. Row reduction is the codification of the high-school algebra applied to systems of equations
but now represented in matrix form.

ii. Matrix multiplication is built off of the standard scalar-product introduced in calculus and

physics.
iii. The cross-product was a kind of symbolic determinant, which can be, in some sense, gener-

alized.

1Recall that vectors are considered linearly independent if and only if c1 = c2 = c3 = · · · =

cn = 0 is the only solution to
∑n

i=1 civi = 0.
2Span is a notation for the set of all linear combinations that can be made from a set of vectors.

That is,

Span {v1,v2,v3 . . . ,vn} =

{
y : y =

n∑
i=1

civi, for ci ∈ R, i = 1, 2, 3, . . . , n

}
(2)
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1.7. Extra Credit: Matrix Spaces. Is b2 ∈ Nul(A2)? Is b2 ∈ Col(A2)? 3

2. Rotation Transformations in R2 and R3

Given,

A(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

2.1. The Unit Circle. Show that the transformation Aî rotates î = [1 0]
t

counter-
clockwise by an angle θ and defines a parametrization of the unit circle. What
matrix would undo this transformation?

2.2. Determinant. Show that det(A) = 1.

2.3. Inverse Transformation. Find a formula for A−1. 4 Describe the geometric
transformation embodied by A−1.

2.4. Orthogonality. Show that A−1 = At where [At]ij = Aji.

2.5. Rotations in R3. Given,

R1(θ) =

1 0 0
0 cos θ − sin θ

0 sin θ cos θ

 , R2(θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 R3(θ) =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 .
Describe the transformations defined by each of these matrices on vectors in R3.

3. Square Coefficient Data, Matrix Inversion and Determinants

Given,

A =

 3 6 7
0 2 1
2 3 4

 .
3.1. Matrix Inverse: Take One. Find A−1 using the Gauss-Jordan Method.
(pg.317)5

3The following are definitions for each space:

Nul(A) =
{
x ∈ Rn : Ax = 0,A ∈ Rm×n

}
(3)

Col(A) =

{
y ∈ Rm : y =

n∑
i=1

ciai, ci ∈ R

}
(4)

We would say that the null-space, Nul(A), is the set of all solutions to the homogeneous problem

Ax = 0 and tells us about the geometry of intersection between the many linear objects. Since

this is the homogeneous problem, it always has a solution, the question the null-space addresses is
whether there are other points of intersection. In a similar vein, the column-space, Col(A), is the

set off all vectors that can be made using the columns of the original matrix. Essentially, these
spaces tell us the following:

i. Null-space: If the linear objects are forced to intersect then what is the intersection geometry.
ii. Column-space: What are the origin offsets permitted such that the previous intersection

geometry holds, up to translation away from the origin.

Lastly, to find out whether a vector is in the null-space simply see if the vector satisfies Ax = 0.
On the other hand to see if a vector is in the column-space you must consider whether Ax = b is

consistent.

4You may want to remember that A−1 = 1
det(A)

[
d −b
−c a

]
.

5Since we don’t have a book I will say that the Gauss-Jordan method is the row-reduction
method where you attempt [A|I] ∼

[
I|A−1

]
. If you cannot make this happen then there is no

inverse matrix.

http://en.wikipedia.org/wiki/Unit_circle 
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3.2. Matrix Inverse: Take Two. Find A−1 using the cofactor representation.
(Theorem 2 pg.318)6

3.3. Solutions to Linear Systems. Using A−1 find the unique solution to Ax =
b = [b1 b2 b3]

t
.

Given,

A =

 1 a a2

1 b b2

1 c c2

 .
3.4. Vandermonde Determinant. 7 Show that the det(A) = (c−a)(c−b)(b−a).

3.5. Application. Determine which of the following sets of points can be uniquely
interpolated by the polynomial p(t) = a0 + a1t+ a2t

2. 8

S1 = {(1, 12), (2, 15), (3, 16)}
S2 = {(1, 12), (1, 15), (3, 16)}
S3 = {(1, 12), (2, 15), (2, 15)}

4. Eigenvalues and Eigenvectors

A1 =

 4 0 1
−2 1 0
−2 0 1

 , A2 =

[
3 1
−2 1

]
, A3 =


4 0 0 0
0 4 0 0
0 0 2 0
1 0 0 2

 , A4 =

[
.1 .6
.9 .4

]
, A5 =

[
0 −i
i 0

]
,

4.1. Eigenproblems. Find all eigenvalues and eigenvectors of Ai for i = 1, 2, 3, 4, 5.

4.2. Diagonlization. Find all matrices associated with the diagonalization of Ai

for i = 3, 4, 5.

6This problem is just more work with determinants. We remember from lecture that determi-
nants can be taken down any row or column of the matrix. Specifically,

det(A) =
n∑

i=1,j fixed
or

j=1,i fixed

aij(−1)i+j det(Aij) =

n∑
i=1,j fixed

or
j=1,i fixed

aijCij ,(5)

where Cij = (−1)i+j det(Aij) is called the (i, j)−cofactor of A, which contains the determinant of

the (i, j)−minor of A, Aij . The minor matrix is found by removing the ith−row and jth−column
of A. It turns out that from this, the inverse of a matrix has a closed form with elements given

by [
A−1

]
ij

=
1

det(A)
Cji.(6)

Such formulae might be useful if one wanted specific elements out of an inverse matrix and not

necessarily the whole thing, which is what you would have to do to find the inverse via Gauss-
Jordan.

7This matrix is common in the study of polynomial interpolation.
8 I always think this problem is neat. First, we are going to use linear algebra on a nonlinear

polynomial. This shouldn’t trouble you much b/c we did the same thing with Fourier series.
Remember so long is the equation is a ‘vector’ times a constant plus more of the same, then we
are talking about a linear problem. In this case the ‘vectors’ are power functions and the scalars

are what we are looking for. So, we consider the first set of points. If the polynomial p is to satisfy

these points then we must have

a0 + a1 + a2 = 12 = p(1)

a0 + 2a1 + 4a2 = 15 = p(2)

a0 + 3a1 + 9a2 = 16 = p(3),

which is a linear system of equation where the unknowns are the ai’s. Now the question is does

there exist a solution and is the solution unique. If so then there is a set of coefficients so that
the quadratic equation touches each of the points in S1. You may also notice that the coefficient

matrix defined by this problem is of the form from subsection (3.4).

http://en.wikipedia.org/wiki/Vandermonde_matrix
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4.3. Extra Credit: regular stochastic matrix. For A4 define its associated
steady-state vector, q, to be such that A4q = q.9

4.4. Extra Credit: Limits of Time Series. Show that lim
n→∞

An
4x = q where

x ∈ R2 such that x1 + x2 = 1.

5. Extra Credit: Orthogonal Diagonalization and Spectral
Decomposition

Recall that if x,y ∈ Cn then their inner-product is defined to be 〈x,y〉 = xhy =

x̄ty. In this case, the ‘length’ of the vector is |x| =
√
〈x,x〉. 10

5.1. Self-Adjointness. Show that A5 is a self-adjoint matrix.11

5.2. Orthogonal Eigenvectors. Show that the eigenvectors of A5 are orthogonal
with respect to the inner-product defined above.

5.3. Orthonormal Eigenbasis. Using the previous definition for length of a vec-
tor and the eigenvectors of the self-adjoint matrix, construct an orthonormal basis
for C2.

5.4. Orthogonal Diagonalization. Show that Uh = U−1, where U is a matrix
containing the normalized eigenvectors of A5.

5.5. Spectral Decomposition. Show that A5 = λ1x1x
h
1 + λ2x2x

h
2.

(Scott Strong) Department of Applied Mathematics and Statistics, Colorado School

of Mines, Golden, CO 80401

E-mail address: sstrong@mines.edu

9 A regular stochastic matrix is a matrix whose elements sum to one for each column and

represents the probability of going from one state, say x0, to another state, say x1, after a multi-

plication. That is, if A is a regular stochastic matrix then we have Ax0 = x1 =⇒ A2x0 = x2 and

generally Anx0 = xn. The question that is typically asked at this point is whether this process
limits to some steady-state vector. In this first question seeks to find the vector that is unchanged
by the multiplication by A4. The next question will show this vector is the limit of infinitely-many

applications of the matrix A4, which can only really be found via eigenvalues/eigenvectors and

diagonalization.
10 First let’s remember that [At]ij = Aji is the transpose of a matrix and just tells us to

swap rows with columns. It is interesting to note that the scalar product can then be rewritten

in terms of a matrix transpose. Consider the scalar product, x,y ∈ Rn then

x · y = xty =
n∑

i=1

xiyi,(7)

which can thus be written as using matrix multiplication and matrix transposition. If x,y ∈ Cn,
which are vectors whose elements are complex then the scalar product is now given by the adjoint.

That is,

x · y = xhy =

n∑
i=1

x̄iyi,(8)

which now gives a way to measure the angle between two complex vectors.
11 A matrix adjoint means two things:

1. Take the transpose of the matrix.
2. Take the complex conjugate of each element in the matrix.

and is the analogy of a transposition for matrices with complex entries. It turns out the every
matrix that equals its own adjoint has a very special diagonal form. We find this form in these

problem.
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