Energy scaling of hollow-fiber frequency conversion of ultrafast pulses

> Jeff Wojtkiewicz <u>Charles G. Durfee</u>

> > Support: CSM, NSF

OSA Annual Meeting 2002

Physics Department

Colorado School of Mines

Hollow fiber frequency mixing

 Physics Department
 Colorado School of Mines

 Gas as nonlinear medium:
 •

 • low dispersion
 •

 • supports high intensity
 •

 • third-order mixing
 •

 Use capillary to guide pump beams:
 •

 • increase interaction length
 •

 • Phase-matching of conversion:
 tune pressure to balance gas/waveguide phase

 • usignal
 = 2 × ωpump - ωidler

Durfee et al, Optics Letters 22, 1565 (1997)

Earlier mixing results:

Physics Department

Colorado School of Mines

Energy limitations: ionization, cross phase modulation

 $\omega_{signal} = 2 \times \omega_{pump} - \omega_{idler}$

OP-CPA: conversion simulations

Physics Department

Colorado School of Mines

Saturated conversion without gain-narrowing is possible

Shown here: 4ps pump, 1.8mJ 50% conversion to UV

- low gain for seed
 - \rightarrow low degree of gain narrowing
- wide-band or narrow-band pump
- third-order process
 → generate new wavelengths
- high output beam quality: single mode
- but requires high input beam quality for efficient waveguide coupling
- output spectrum is not narrowed

Comparison of amplifier technologies

Physics Department

Colorado School of Mines

energy storage
ASE/prepulses
gain-narrowing
thermal loading
dispersion
B-integral
amp λ

pump req'ts
pump λ
duration range
shape
beam quality
alignment
bandwidth/phase

Laser crystal	OP-CPA	OP-CPA
amplifiers	<u>(crystals)</u>	<u>(hollow fiber)</u>
\checkmark	X	X
\checkmark	X	X
\checkmark	\checkmark	X
\checkmark	little	X
\checkmark	little	X
some	little	little
limited choi	ce λ _a >400	λ _a >100
limited choi	ce λ _p >355	λ _p >200
wide	<1ns	<100ps
any	flat-top	gauss, flat
gauss-flat	flat	gauss
easy	overlap, ang	le mode-matching
any	narrow	narrow or chirped

Hollow fiber OP-CPA: experiment

Physics Department

Colorado School of Mines

Energy extraction

Physics Department

COLORADO

Colorado School of Mines

Without saturation, UV output should decrease with greater IR duration:

• signal is linear in IR

With saturation, UV yield increases with IR duration:

- longer IR seed can sweep out more of pump pulse energy
- cross-phase modulation is greatly reduced

Energy conversion: experimental results

Physics Department

Colorado School of Mines

Input: blue 110 fs, 48μJ IR: 40μJ

Output increases with IR chirp:

better overlap/extraction

less XPM

• measure 20µJ depletion of blue (may not be seeing all of UV)

 limited by focusability of blue at high conversion

Dispersion-free SD-FROG

Durfee *et al*, Optics Letters **24**, 697 (1999)

High-power doubling

Physics Department

Colorado School of Mines

Doubling at high conversion efficiency is easy...

- even with "thick" crystals, conversion gives short pulse
- conversion saturates in first layer of crystal

... but preserving beam quality is not.

At high conversion (~50%) focusing quality deteriorates

Further scaling: opposite chirp mixing

Physics Department

Colorado School of Mines

Opposite-chirp mixing for blue $\rightarrow \sim 50\%$ **more output (14.5µJ)**

OP-CPA: compression simulations

Physics Department

Colorado School of Mines

UV output has negative chirp (even orders of IR phase change sign) Compressed UV output as short as original IR pulse (chirped pump gives shorter output)

Prism pair: +'ve dispersion mode (correct sign of 2nd and 3rd order phase)

Future prospects: energy/wavelength scaling

Physics Department

Colorado School of Mines

Scaling to higher energy: • higher-energy amplifier • improve focusability of blue

• current:

• scale to TW level:

Scaling to short wavelength for high-power VUV:

- pump pulse can be narrow-band
- mix 800nm with: YAG harmonics:
- 355nm \rightarrow 230nm, 266nm \rightarrow 160nm, 210nm \rightarrow 120nm

Applications of high-power UV pulses

Physics Department

Colorado School of Mines

- pump for recombination XRL
- tunneling ionization in high-frequency limit
- micromachining materials processing
- hard x-ray generation
- efficient low-order HHG
- photoelectron spectroscopy: fast dynamics of small molecules

Mixing simulations

Physics Department

Colorado School of Mines

Propagation code calculates saturated conversion

Input fields:

•energy, pulse duration, chirp, relative delay

Pressure loop

Propagation step loop: split-step + Runge-Kutta

Time domain: •spm, xpm

•nonlinear mixing

Frequency domain: •dispersion, losses

Output processing: •energy calculation •post-compression

Major assumptions:

- discrete-mode propagation
- five harmonic fields
- no bending losses
- no ionization

Characterization of input pulses

Physics Department

Colorado School of Mines

Blue pulse:

- initially 35fs
- chirped to 110fs with 8.5mm BK7, 3mm fused silica

IR pulse:

- initially 45 fs
- chirped to 51, 57, 63fs with additional BK7

Compression

Physics Department

Colorado School of Mines

UV pulse compression:

- positive IR chirp gives negative UV chirp
- simple compression with material not sufficient: 3rd order
- even orders of phase change sign, odd remain same

Group delay for FS prism pair (10cm sep)

