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Hollow fiber frequency mixing
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Gas as nonlinear medium:
* low dispersion
« supports high intensity

* third-order mixing
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Use capillary to guide pump beams: pump 1
* increase interaction length
* Phase-matching of conversion:
tune pressure to balance gas/waveguide phase
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Durfee et al, Optics Letters 22, 1565 (1997)
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Earlier mixing results:
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» pressure optimum produces
1 Kr A/ lowest-order HE,, UV mode

«— « XPM can broaden bandwidth

» compress to 8fs

5 - high conversion efficiency

f’ 0.5 (40% from pump)
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& - output energy in the 1-5pJ
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Energy limitations: ionization, cross phase modulation




_ optical parametric
OP-CPA: chirped pulse amplification
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Stretch pulse: same intensity, more energy ”
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chirp is reversed
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OP-CPA: conversion simulations
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Saturated conversion without
gain-narrowing is possible

chirped
UV output pulse

blue pump

in
out

time (ps)
Shown here:

4ps pump, 1.8mJ
50% conversion to UV
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* low gain for seed
— low degree of gain narrowing

» wide-band or narrow-band pump

* third-order process
— generate new wavelengths

N high output beam quality: single mode

* but requires high input beam quality for
efficient waveguide coupling

» output spectrum is not narrowed



Comparison of amplifier technologies
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*energy storage
ASE/prepulses
egain-narrowing
-thermal loading
edispersion
*B-integral

‘amp A

pump reqg’ts
‘pump A
eduration range
shape

*beam quality
«alignment
*bandwidth/phase

Laser crystal OP-CPA OP-CPA
amplifiers (crystals) (hollow fiber)
v X X
v X X
v v X
v little X
v little X
some little little
limited choice A_,>400 A,>100
limited choice  A,>355 A,>200
wide <1ns <100ps
any flat-top gauss, flat
gauss-flat flat gauss
easy overlap, angle mode-matching
any narrow narrow or chirped



Hollow fiber OP-CPA: experiment
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Input:
820nm, 30fs
1.8 mJ, 10 Hz

BBO (0.5mm)

s

0.25” BK7 |-»|

 dispersion compensation:
short pulse IR into BBO and into
capillary

» additional dispersion to blue

» control duration of IR w/add’l
material

Capillary (150pm x 30cm)




Energy extraction

Without saturation, UV output should decrease with greater IR duration:
 signal is linear in IR

1ips blue pump
duration

relative conversion
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With saturation, UV yield increases with IR duration:
* longer IR seed can sweep out more of pump pulse energy
» cross-phase modulation is greatly reduced
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UV output (uJ)
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IR pulse duration (plates BK7)
Input: blue 110 fs, 48uJ IR: 40unJ

Output increases with IR chirp:
* better overlap/extraction
* less XPM
* measure 20uJ depletion of blue
(may not be seeing all of UV)
* limited by focusability of blue at
high conversion




Dispersion-free SD-FROG
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Three-mirror self-diffraction FROG:
» simple setup/alignment

input - only reflections: wide bandwidth/dispersion-free
l * less than 1 puJ input required
spectrometer 40
B
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400nm pulse chirped w/6mm BK7
Durfee et al, Optics Letters 24, 697 (1999)



High-power doubling
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Doubling at high conversion efficiency is easy...
« even with “thick” crystals, conversion gives short pulse
« conversion saturates in first layer of crystal

calculation measurement
IR pulse —_
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. but preserving beam quality is not.
» At high conversion (~50%) focusing quality deteriorates




Further scaling: opposite chirp mixing
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~30% Conversion

to 400 nm
0.5 mm BBO
4 cm BK7

10 HZ 2.6 mrad
800 nm

20 fs Pulse

Ti:Sapphire

CPA System
/2 —
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Opposite-chirp mixing for blue — ~50% more output (14.5uJ)




OP-CPA: compression simulations
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UV output has negative chirp Compressed UV output as short
(even orders of IR phase change sign) as original IR pulse

(chirped pump gives shorter output)

08 -
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Prism pair: +’ve dispersion mode —> <« 20fs
(correct sign of 2nd and 3rd order phase) 04 -
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Future prospects: energy/wavelength scaling {5
Scaling to higher energy:

* higher-energy amplifier
« improve focusability of blue

Pump 25% | uv
—»
* current: 100fs, 50pLJ 12p1d
- scale to TW level: Pump _25% y UV
170ps, 80mJ 20mJ

Scaling to short wavelength for high-power VUV:
* pump pulse can be narrow-band
* mix 800nm with: YAG harmonics:
* 355nm — 230nm, 266nm — 160nm, 210nm — 120nm




Applications of high-power UV pulses

 pump for recombination XRL

 tunneling ionization in high-frequency limit
* micromachining - materials processing

* hard x-ray generation

- efficient low-order HHG

* photoelectron spectroscopy: fast dynamics of small molecules



Mixing simulations
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Propagation code calculates saturated conversion

Input fields:

senergy, pulse duration, chirp, relative delay

Pressure loop
4 Propagation step loop: split-step + Runge-Kutta

A Time domain:
*spm, Xpm
'nonlinear mixing
Fr.eque.ncy domain: Major assumptions:
v \4 edispersion, losses * discrete-mode propagation

* five harmonic fields
* no bending losses
* no ionization

Output processing:
scnergy calculation

*post-compression




Characterization of input pulses
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Blue pulse:
* initially 35fs
 chirped to 110fs with 8.5mm BK7, 3mm fused silica
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IR pulse:
* initially 45 fs
 chirped to 51, 57, 63fs with additional BK7




Compression
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UV pulse compression:
* positive IR chirp gives negative UV chirp
» simple compression with material not sufficient: 3rd order
» even orders of phase change sign, odd remain same

adj prism insertion

» prisms in positive dispersion allow
2nd and 3rd order compensation
» characterize with SD FROG

Group delay (fs)
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Wavelength (nm)
Group delay for FS prism pair (10cm sep)



800 nm

/

Molectron J3-05
Joule-Meter

f=750 mm

20.7-J UV
A
N U

f=500 mm D Capillary Cell

ID 120 m, length 63 cm
86 Torr Argon




