MATH 235 - Differential Equations w/ Honors Homework 4, Spring 2008

February 11, 2008
Due: February 21, 2008

Existence and Uniqueness - Phase Lines - Bifurcations - Linearity

1. Consider the autonomous first-order differential equation,

$$
\begin{equation*}
\frac{d y}{d t}=f(y), \tag{1}
\end{equation*}
$$

where f is continuously differentiable.
(a) Suppose that $y_{1}(t)$ is a solution to (1) and that $y_{1}(t)$ has a local maximum at $t=t_{0}$. Let $y_{0}=y_{1}\left(t_{0}\right)$. Show that $f\left(y_{0}\right)=0$.
(b) Show that the constant function $y_{2}(t)=y_{0}$ is a solution to the differential equation (1).
(c) Show that $y_{1}(t)=y_{0}$ for all t.

Hint: For (c), what can be said about the uniqueness of solutions, y_{1}, y_{2}, to the differential equation?
Comment: A similar argument can be made where $y_{1}(t)$ has a local minimum at t_{0}. This implies that if $y(t)$ is a solution to (1), which has a local extrema, then this solution is a constant function. That is, if only equilibrium solutions have local extrema then non-equilibrium solutions must be either always increasing or always decreasing!
2. Given,

$$
\begin{equation*}
\frac{d y_{1}}{d t}=\alpha-y_{1}^{2}, \quad \frac{d y_{2}}{d t}=\alpha+y_{2}^{2}, \quad \frac{d y_{3}}{d t}=\alpha y_{3}-y_{3}^{3}, \quad \frac{d y_{4}}{d t}=\left(y_{4}^{2}-\alpha\right)\left(y_{4}^{2}-4\right) \tag{2}
\end{equation*}
$$

For each of the previous families of differential equations of the parameter α do the following:
(a) Calculate the bifurcation value(s) of α.
(b) Sketch phase lines for various values of α.
(c) Using this information draw a bifurcation diagram labeling the stable and unstable equilibrium solutions.
3. Determine the general solution for the following linear differential equations:
(a) $\frac{d y}{d t}-2 y=t^{2}+3 e^{t}$
(b) $y^{\prime}=5 y+3 e^{5 t}$
(c) $y^{\prime}=-3 y+2 \cos (2 t)$
(d) $y^{\prime \prime}-3 y^{\prime}+2 y=0$

Hint: For (d) assume that $y(t)=e^{r t}, r \in \mathbb{R}$, and show that $y^{\prime \prime}-3 y^{\prime}+2 y=0 \Longleftrightarrow r^{2}-3 r+2=0$. Solve for r to find two possible solutions. In this case the general solution is $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t), c_{1}, c_{2} \in \mathbb{R}$.
4. Given the first-order linear ODE with variable coefficient $p(t)$, and inhomogeneity $g(t)$,

$$
\begin{equation*}
\frac{d y}{d t}+p(t) y=g(t) \tag{3}
\end{equation*}
$$

It is possible to find an integrating factor $\mu(t)$ that when multiplied into the equation (3) makes the left-hand side into an exact derivative.
(a) Multiply (3) on both sides by a currently unknown function $\mu(t)$ and assuming that a suitable $\mu(t)$ can be found show that (3) can be written as, $\frac{d[\mu y]}{d t}=\mu(t) g(t)$.
(b) Now using the auxiliary equation from part (a) show that this integrating factor has the form $\mu(t)=e^{\int p(t) d t}$.
5. Use the results from problem 4 to solve the first-order linear ordinary differential equation with variable coefficients $y^{\prime}+2 t^{-1} y=e^{2 t}$.

