Text	David C. Lay, Linear Algebra and its Applications, $3^{\text {rd }}$ edition, Pearson, Boston, 2006
Course Description	Systems of linear equations, matrices, determinants and eigenvalues. Linear operators. Abstract vector spaces. Applications selected from linear programming, physics, graph theory, and other fields. Prerequisite: MATH 213, 223 or 224.
Sections	A : 3:00pm-4:20pm Location: Meyer Hall 353
Instructor Info	Instructor: Scott Strong Phone: 303.384 .2446 Office: Chauvenet Hall 278 Email: math332.summer2009@gmail.com Office Hours: MTWR 12:20am-2:00pm
Grading	Exams (2 @ 25\% each): 50% $90-100 \%$ A Final Exam: 30% $80-89 \%$ B Discretionary: 20% $70-79 \%$ C Total: 100% $60-69 \%$ D Below 60% F
Important Dates	First Day of Class June 15 Last Day to Drop Without a W June 23 Last Day to Withdraw July 10 Last Day of Class August 6
Academic Honor Code	I pledge to uphold the high standards of academic ethics and integrity expressed by the Colorado School of Mines Student Honor Code by which I am bound. In particular, 'I will not misrepresent the work of others as my own, nor will I give or receive unauthorized assistance in the performance of academic coursework.' I understand that my instructor will report any infraction of academic integrity to the Department Head and that any such matter will be investigated and prosecuted fully.

MATH332-Summer2009 - Tentative Schedule ${ }^{1}$

Week	Sections	Key Concepts
1	$1.1-1.8$	Linear Systems of Equations, Vector Equa- tions, Matrix Equations, Existence and Uniqueness of Solutions Sets, Row Echelon Form, Linear Independence, Span, Linear Maps
2	$2.1-2.7$	Matrix Algebra, Commutativity, Distribu- tion, Inner-Product, Outer-Product, Matrix Product, Matrix Factorizations, Invertible Matrices
3	Applications	Numerical Approximation of Solutions to Par- tial Differential Equations, Leontief Input- Output Models, Computer Graphics, Quan- tum Mechanics
4	$3.1-3.3$	Determinant, Cramer's Theorem, Volumes, Invertible Mappings
5	$4.1-4.6,4.9$	Matrix Spaces, Row Space, Column Space, Null Space, Abstract Vector Spaces, Sub- spaces, Bases, Dimension, Change of Coordi- nates,
6	$5.1-5.3,5.5$	Eigenvalues, Spectra, Eigenvectors, Diagonal- ization, Eigenfunction
7	$6.1-6.6$	Inner-Product, Orthogonality, Orthogonal Projection, Gram-Schmidt, Least-Squares, Inner-Product Space
8	$7.1,7.2,7.4$	Eigenbasis, Quadratic Form, Singular Value Decomposition, Spectral Decomposition of Symmetric Matrices

[^0]
[^0]: ${ }^{1} \mathrm{~A}$ listing of covered sections and recommended problems from the text will be given in the header box of each 'lecture slide' posted on the ticc website.

