MATH225, Fall 2008
Worksheet 7 (3.6, 4.1, 4.2)

Name:
Section:

For full credit, you must show all work and box answers.

1. Find the solutions of the given second-order equations or initial-value problems. Use the method from section 3.6.
(a) $y^{\prime \prime}+6 y^{\prime}+9 y=0$
(b) $\frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+y=0$
(c) $4 y^{\prime \prime}-8 y^{\prime}+3 y=0, \quad y(0)=2, \quad y^{\prime}(0)=\frac{1}{2}$
2. Consider the harmonic oscillator with the second-order equation $2 \frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+y=0$.
(a) Find the general solution of the second-order equation that models the motion of the oscillator. Use the method from section 3.6.
(b) Classify the oscillator.
(c) Find the particular solution with the initial condition $y(0)=0$ and $v(0)=3$.
(d) What is the long-term behavior (as $t \rightarrow \infty$) of $y(t)$ and $v(t)$ from part(c)?
(e) Write the first-order system that corresponds to the second-order differential equation given above, find the eigenvalues, and classify the origin.
3. Find the solutions of the given second-order equations or initial-value problems.
(a) $y^{\prime \prime}-3 y^{\prime}-4 y=4 t^{2}-1$
(b) $\frac{d^{2} y}{d t^{2}}-4 y=t^{2}+3 e^{t}, \quad y(0)=0,\left.\quad \frac{d y}{d t}\right|_{t=0}=2$
(c) $y^{\prime \prime}-4 y^{\prime}+4 y=3 e^{2 t}$
4. Find the solutions of the given second-order equations or initial-value problems.
(a) $y^{\prime \prime}+y=3 \sin (2 t), \quad y(0)=y^{\prime}(0)=0$
(b) $y^{\prime \prime}+6 y^{\prime}+5 y=4 e^{-t} \cos (3 t)$
