
2-6.  

   

Let the origin of our coordinate system be at the tail end of the cattle (or the closest cow/bull). 

a) The bales are moving initially at the speed of the plane when dropped. Describe one of 
these bales by the parametric equations 

  0 0x x v t   (1) 

  2
0

1

2
y y gt   (2) 

where 0 80 my  , and we need to solve for 0x . From (2), the time the bale hits the ground is 

02y g  . If we want the bale to land at   30 mx    , then  0 0x x v   . Substituting 
-1

0 44.4 m sv    and the other values, this gives 0 210 mx  . The rancher should drop the bales 

210 m behind the cattle. 

b) She could drop the bale earlier by any amount of time and not hit the cattle. If she were late 
by the amount of time it takes the bale (or the plane) to travel by 30 m in the x-direction, then 

she will strike cattle. This time is given by   030 m 0.68 sv . 

2-8.  

   

From problem 2-3 the equations for the coordinates are 

  0 cosx v t   (1) 

  2
0

1
sin

2
y v t gt   (2) 

In order to calculate the time when a projective reaches the ground, we let y = 0 in (2): 

  2
0

1
sin 0

2
v t gt    (3) 

  02
sin

v
t

g
  (4) 

Substituting (4) into (1) we find the relation between the range and the angle as 

  
2
0 sin 2

v
x

g
  (5) 

The range is maximum when 2
2


  , i.e., 

4


  . For this value of  the coordinates become 



  

0

20

2

1

22

v
x t

v
x t gt


 



 


 (6) 

Eliminating t between these equations yields 

  
2 2

2 0 0 0
v v

x x y
g g

    (7) 

We can find the x-coordinate of the projectile when it is at the height h by putting y = h in (7): 

  
2 2

2 0 0 0
v v h

x x
g g

    (8) 

This equation has two solutions: 

  

2 2
20 0

1 0

2 2
20 0

2 0

4
2 2

4
2 2

v v
x v gh

g g

v v
x v gh

g g


   





   


 (9) 

where 1x  corresponds to the point P and 2x  to Q in the diagram. Therefore, 

  20
2 1 0 4

v
d x x v gh

g
     (10) 

2-13. The equation of motion of the particle is 

   3 2dv
m mk v a v

dt
    (1) 

Integrating, 

  
 2 2

dv
k dt

v v a
 


   (2) 

and using Eq. (E.3), Appendix E, we find 

  
2

2 2 2

1
ln

2

v
kt C

a a v

 
   

 
 (3) 

Therefore, we have 

  
2

2 2

Atv
C e

a v
 


 (4) 

where 22A a k  and where C is a new constant. We can evaluate C by using the initial 
condition, 0v v  at t = 0: 



  
2
0

2 2
0

v
C

a v



 (5) 

Substituting (5) into (4) and rearranging, we have 

  

1 22

1

At

At

a C e dx
v

C e dt





 
  

  
 (6) 

Now, in order to integrate (6), we introduce Atu e  so that du = –Au dt. Then, 

  

1 2 1 2
2

2

1 1

At

At

a C e a C u du
x dt

C e A C u u

a C du

A C u u





   
        


 

 

 

  (7) 

Using Eq. (E.8c), Appendix E, we find 

   1sin 1 2
a

x C u C
A

     (8) 

Again, the constant C can be evaluated by setting x = 0 at t = 0; i.e., x = 0 at u = 1: 

   1sin 1 2
a

C C
A

     (9) 

Therefore, we have 

     1 1sin 2 1 sin 2 1Ata
x C e C

A
            

Using (4) and (5), we can write 

  
2 22 2

1 1 0
2 2 2 2

0

1
sin sin

2

v av a
x

ak v a v a
 

      
    

     
 (10) 

From (6) we see that v  0 as t  . Therefore, 

  
2 2

1 1

2 2
lim sin sin (1)

2t

v a

v a

 



  
  

 
 (11) 

Also, for very large initial velocities, 

   
0

2 2
1 10

2 2
0

lim sin sin 1
2v

v a

v a

 



  
    

 
 (12) 

Therefore, using (11) and (12) in (10), we have 

   
2

x t
ka


   (13) 

and the particle can never move a distance greater than 2ka  for any initial velocity. 



2-14. 

   

a) The equations for the projectile are 

  

0

2
0

cos

1
sin

2

x v t

y v t gt







 

 

Solving the first for t and substituting into the second gives 

  
2

2 2
0

1
tan

2 cos

gx
y x

v



   

Using x = d cos  and y = d sin  gives 

  

2 2

2 2
0

2

2 2
0

cos
sin cos tan

2 cos

cos
0 cos tan sin

2 cos

gd
d d

v

gd
d

v


  




  



 

 
   

 

 

Since the root d = 0 is not of interest, we have 

  

 

 

2 2
0

2

2
0

2

2 cos tan sin cos

cos

2 cos sin cos cos sin

cos

v
d

g

v

g

   



    









 

  
 2

0

2

2 cos sin

cos

v
d

g

  




  (1) 

b) Maximize d with respect to  

        
2
0
2

2
0 sin sin cos cos cos 2

cos

vd
d

d g
       

 
          

   cos 2 0    



  2
2


    

  
4 2

 
    

c) Substitute (2) into (1) 

  
2
0

max 2

2
cos sin

cos 4 2 4 2

v
d

g

   



    
          

 

Using the identity 

     
1 1

sin sin 2 cos sin
2 2

A B A B A B     

we have 

  
2 2
0 0

max 2 2

sin sin 1 sin2 2
cos 2 1 sin

v v
d

g g


 

 

  
    

 
 

  
 

2
0

max
1 sin

v
d

g 



 

2-15.  

   

The equation of motion along the plane is 

  2sin
dv

m mg kmv
dt

   (1) 

Rewriting this equation in the form 

  
2

1

sin

dv
dt

gk v
k







 (2) 

We know that the velocity of the particle continues to increase with time (i.e., 0dv dt  ), so that 

  2sing k v  . Therefore, we must use Eq. (E.5a), Appendix E, to perform the integration. We 

find 

  11 1
tanh

sin sin

v
t C

k g g

k k
 

  
  

 
 

 (3) 

The initial condition v(t = 0) = 0 implies C = 0. Therefore, 



   sin tanh sin
g dx

v gk t
k dt

    (4) 

We can integrate this equation to obtain the displacement x as a function of time: 

   sin tanh sin
g

x gk t dt
k

    

Using Eq. (E.17a), Appendix E, we obtain 

  
 ln cosh sin

sin
sin

gk tg
x C

k gk





    (5) 

The initial condition x(t = 0) = 0 implies C = 0. Therefore, the relation between d and t is 

   
1

ln cosh sind gk t
k

  (6) 

From this equation, we can easily find 

  
 1cosh

sin

dke
t

gk 



  (7) 

2-22.  

   

Our force equation is 

   q  F E v B  (1) 

a) Note that when E = 0, the force is always perpendicular to the velocity. This is a centripetal 
acceleration and may be analyzed by elementary means. In this case we have also v B so that 

vB v B . 

  
2

centripetal

mv
ma qvB

r
   (2) 

Solving this for r 

  
c

mv v
r

qB 
   (3) 



with c qB m   . 

b) Here we don’t make any assumptions about the relative orientations of v and B, i.e. the 
velocity may have a component in the z direction upon entering the field region. Let 

x y z  r i j k , with v r  and a r . Let us calculate first the v  B term. 

   
0 0

x y z B y x

B

   

i j k

v B i j  (4) 

The Lorentz equation (1) becomes 

   y zm qBy q E Bx qE    F r i j k  (5) 

Rewriting this as component equations: 

  c

qB
x y y

m
    (6) 

  
y y

c

qE EqB
y x x

m m B


 
       

 (7) 

  zqE
z

m
   (8) 

The z-component equation of motion (8) is easily integrable, with the constants of integration 
given by the initial conditions in the problem statement. 

    2
0 0

2
zqE

z t z z t t
m

    (9) 

c) We are asked to find expressions for x  and y , which we will call xv  and yv , respectively. 

Differentiate (6) once with respect to time, and substitute (7) for yv  

  2 y

x c y c x

E
v v v

B
 

 
     

 (10) 

or 

  2 2 y

x c x c

E
v v

B
    (11) 

This is an inhomogeneous differential equation that has both a homogeneous solution (the 
solution for the above equation with the right side set to zero) and a particular solution. The 
most general solution is the sum of both, which in this case is 

     1 2cos sin
y

x c c

E
v C t C t

B
     (12) 

where 1C  and 2C  are constants of integration. This result may be substituted into (7) to get yv  

     1 2cos siny c c c cC t C tv        (13) 



     1 2sin cosy c cv C t C t K      (14) 

where K is yet another constant of integration. It is found upon substitution into (6), however, 
that we must have K = 0. To compute the time averages, note that both sine and cosine have an 
average of zero over one of their periods 2 cT   . 

  0
yE

x y
B

    (15) 

d) We get the parametric equations by simply integrating the velocity equations. 

     1 2sin cos
y

c c x

c c

EC C
x t t t D

B
 

 
     (16) 

     1 2cos sinc c y

c c

C C
y t t D 

 
    (17) 

where, indeed, xD  and yD  are constants of integration. We may now evaluate all the C’s and 

D’s using our initial conditions  0 cx A   ,  0 yx E B ,  0 0y  ,  0y A . This gives us 

1 0x yC D D   , 2C A  and gives the correct answer 

     cos
y

c

c

EA
x t t t

B





   (18) 

   ( ) sin c

c

A
y t t


  (19) 

These cases are shown in the figure as (i) yA E B , (ii) yA E B , and (iii) yA E B . 

   


