To describe plane waves moving through dielectrics instead of vacuum, what is the most relevant change you need to make to the plane-wave-in-a-vacuum situation?
(A) Modify the wave equations for E and B to reflect the presence of a polarization current
(B) Modify the wave equations for E and B to reflect the presence of bound charge
(C) Everywhere you had an ε_{0}, replace it with an ε
D) Everywhere you had a μ_{0}, replace it with a μ -

A plane wave comes in from the left and hits an interface. We have (glass, air) on the left and (air, glass) on the right.

A) (towards, towards) the surface normal
B) (away from, away from) the surface normal
C) (towards, away from) the surface normal
D) (away from towards) the surface normal

A plane wave normally incident on an interface between 2 linear (non-magnetic) dielectrics $\left(\mathrm{n}_{1} \neq \mathrm{n}_{2}\right)$

How do k_{1} and k_{2} compare? How do ω_{1} and ω_{2} compare?
A) $k_{1}=k_{2}, \omega_{1}=\omega_{2}$
B) $k_{1} \neq k_{2}, \omega_{1} \neq \omega_{2}$
C) $k_{1}=k_{2}, \omega_{1} \neq \omega_{2}$
D) $k_{1} \neq k_{2}, \omega_{1}=\omega_{2}$

If air, glass, and plastic are all transparent, how come they're not necessarily invisible?

FRONT ELEVATION LED FACADE SYSTEM: 30\% POWER

FRONT ELEVATION LED FACADE SYSTEM: 100\% POWER

