To describe plane waves moving through dielectrics instead of vacuum, what is the most relevant change you need to make to the plane-wave-in-a-vacuum situation?

- A) Modify the wave equations for E and B to reflect the presence of a polarization current
 B) Modify the wave equations for E and B to reflect the
 - presence of bound charge
- Σ Everywhere you had an ε_0 , replace it with an ε
- D) Everywhere you had a μ_0 , replace it with a μ_-

A plane wave comes in from the left and hits an interface. We have (glass, air) on the left and (air, glass) on the right.

The wave path will bend

- | K| = 1
- A) (towards, towards) the surface normal
- B) (away from, away from) the surface normal
- C) (towards, away from) the surface normal
- D) (away from, towards) the surface normal

A plane wave normally incident on an interface between 2 linear (non-magnetic) dielectrics $(n_1 \neq n_2)$

How do k_1 and k_2 compare? How do ω_1 and ω_2 compare? A) $k_1 = k_2, \, \omega_1 = \omega_2$ B) $k_1 \neq k_2, \, \omega_1 \neq \omega_2$ C) $k_1 = k_2, \, \omega_1 \neq \omega_2$ D) $k_1 \neq k_2, \, \omega_1 = \omega_2$ If air, glass, and plastic are all *transparent*, how come they're not necessarily *invisible*?

FRONT ELEVATION LED FACADE SYSTEM: 30% POWER

FRONT ELEVATION LED FACADE SYSTEM: 100% POWER