3D wave propagation

$$
\nabla^{2} \mathbf{E}-\frac{n_{j}^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}+\nabla_{\perp}^{2} \mathbf{E}-\frac{n(\mathbf{r})^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=0
$$

- Note:

$$
\nabla_{\perp}^{2}=\partial_{x}^{2}+\partial_{y}^{2} \quad \nabla_{\perp}^{2}=\frac{1}{r} \partial_{r}\left(r \partial_{r}\right)+\frac{1}{r^{2}} \partial_{\varphi}^{2}
$$

- All linear propagation effects are included in LHS: diffraction, interference, focusing...
- With plane waves transverse derivatives are zero.
- More general examples:
- Gaussian beams (including high-order)
- Waveguides
- Arbitrary propagation
- Can determine discrete solutions to linear equation (e.g. Gaussian modes, waveguide modes), then express fields in terms of those solutions.

General 3D plane wave solution

- Assume separable function

$$
\begin{aligned}
& \mathbf{E}(x, y, z, t) \sim f_{1}(x) f_{2}(y) f_{3}(z) g(t) \\
& \vec{\nabla}^{2} \mathbf{E}(z, t)=\frac{\partial^{2}}{\partial x^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial y^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z, t)=\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}(z, t)
\end{aligned}
$$

- Solution takes the form:

$$
\begin{aligned}
& \mathbf{E}(x, y, z, t)=\mathbf{E}_{0} \mathbf{e}^{i k_{x} x} e^{i k_{y} y} e^{i k_{z} z} e^{-i \omega t}=\mathbf{E}_{0} e^{i\left(k_{x} x+k_{y}, y+k_{z}\right)} e^{-i \omega t} \\
& \mathbf{E}(x, y, z, t)=\mathbf{E}_{0} e^{i\left(\mathbf{k}-\mathrm{m}^{-\omega t}\right)}
\end{aligned}
$$

- Now k -vector can point in arbitrary direction
- With this solution in W.E.:

$$
n^{2} \frac{\omega^{2}}{c^{2}}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\mathbf{k} \cdot \mathbf{k}
$$

Valid even in waveguides and resonators

Grad and curl of 3D plane waves

- Simple trick:

$$
\nabla \cdot \mathbf{E}=\partial_{x} E_{x}+\partial_{y} E_{y}+\partial_{z} E_{z}
$$

- For a plane wave,

$$
\nabla \cdot \mathbf{E}=i\left(k_{x} E_{x}+k_{y} E_{y}+k_{z} E_{z}\right)=i(\mathbf{k} \cdot \mathbf{E})
$$

- Similarly,

$$
\nabla \times \mathbf{E}=i(\mathbf{k} \times \mathbf{E})
$$

- Consequence: since

$$
\nabla \cdot \mathbf{E}=0, \quad \mathbf{k} \perp \mathbf{E}
$$

- For a given k direction, E lies in a plane
- E.g. x and y linear polarization for a wave propagating in z direction

Curved wavefronts

- Rays are directed normal to surfaces of constant phase
- These surfaces are the wavefronts
- Radius of curvature is approximately at the focal point

- Spherical waves are approximate solutions to the wave equation (away from $r=0$)

$$
\nabla^{2} E+\frac{n^{2} \omega^{2}}{c^{2}} E=0 \quad E \propto \frac{1}{r} e^{i(\pm k r-\omega t)} \quad \begin{aligned}
& \text { Scalar } r \\
& + \text { outward } \\
& - \text { inward }
\end{aligned} \quad I \propto \frac{1}{r^{2}}
$$

Paraxial approximations

- For rays, paraxial = small angle to optical axis
- Ray slope: $\tan \theta \approx \theta$
- For spherical waves where power is directed forward:

$$
\begin{aligned}
& e^{i k r}=\exp \left[i k \sqrt{x^{2}+y^{2}+z^{2}}\right] \\
& k \sqrt{x^{2}+y^{2}+z^{2}}=k z \sqrt{1+\frac{x^{2}+y^{2}}{z^{2}}} \approx k z\left(1+\frac{x^{2}+y^{2}}{2 z^{2}}\right) \quad \begin{array}{l}
\text { Expanding to } 1^{\text {st }} \\
\text { order }
\end{array} \\
& e^{i(k r-\omega t)} \rightarrow e^{i k z} \exp \left[i\left(k \frac{x^{2}+y^{2}}{2 z}-\omega t\right)\right] \quad z \text { is radius of curvature }
\end{aligned}
$$

Wavefront = surface of constant phase $\quad k \frac{x^{2}+y^{2}}{2 z}=\omega t$ For $\mathrm{x}, \mathrm{y}>0$, t must increase.

Diffractive propagation

- Huygens' principle:
- Represent a plane wave as a superposition of source points
emitting spherical waves
- Integral representation:

$$
E(x, y, z)=\frac{i}{\lambda} \iint \underset{\substack{\text { Field at input } \\
\text { plane }}}{E\left(x^{\prime}, y^{\prime}, z^{\prime}\right)} \frac{\exp \left[-i k\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right]}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \frac{\begin{array}{c}
\text { Spherical } \\
\text { wavelet }
\end{array}}{\cos \theta d x^{\prime} d y^{\prime}}
$$

Inclination
This is essentially a convolution of the complex input field with the spherical wavelets, which are the Green's function for the wave equation

Maxwell's Equations to wave eqn

- Write Maxwell's eqns for a linear medium

$$
\begin{array}{ll}
\vec{\nabla} \cdot\left(\varepsilon_{0} \varepsilon \mathbf{E}\right)=0 & \vec{\nabla} \times \mathbf{E}=-\mu_{0} \mu \frac{\partial \mathbf{H}}{\partial t} \\
\vec{\nabla} \cdot\left(\mu_{0} \mu \mathbf{H}\right)=0 & \vec{\nabla} \times \mathbf{H}=\varepsilon_{0} \varepsilon \frac{\partial \mathbf{E}}{\partial t}
\end{array}
$$

- Assume:
- Non-magnetic medium ($\mu=0$)
- Linear medium $\mathrm{D}=\varepsilon_{0} \varepsilon \mathbf{E}$
- Non-dispersive medium

Take the curl:

$$
\begin{gathered}
\vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=-\mu_{0} \frac{\partial}{\partial t} \vec{\nabla} \times \mathbf{H}=-\mu_{0} \frac{\partial}{\partial t}\left(\varepsilon_{0} \varepsilon \frac{\partial \mathbf{E}}{\partial t}\right)=-\frac{1}{c^{2}} \frac{\partial}{\partial t}\left(\varepsilon \frac{\partial \mathbf{E}}{\partial t}\right) \\
\vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=\vec{\nabla}(\vec{\nabla} \cdot \mathbf{E})-(\vec{\nabla} \cdot \vec{\nabla}) \mathbf{E} \quad \text { BAC-CAB vector ID }
\end{gathered}
$$

Wave equation for spatially varying media

- Generalized wave equation

$$
\vec{\nabla}(\vec{\nabla} \cdot \mathbf{E})-(\vec{\nabla} \cdot \vec{\nabla}) \mathbf{E}=-\frac{1}{c^{2}} \frac{\partial}{\partial t}\left(\varepsilon \frac{\partial \mathbf{E}}{\partial t}\right)=-\frac{1}{c^{2}} \varepsilon \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}
$$

If ε is time-
independent

- If medium has a spatially-varying refractive index:

$$
\begin{aligned}
& \vec{\nabla} \cdot(\varepsilon \mathbf{E})=\varepsilon \vec{\nabla} \cdot \mathbf{E}+(\mathbf{E} \cdot \vec{\nabla}) \varepsilon=0 \quad \rightarrow \vec{\nabla} \cdot \mathbf{E}=-\frac{1}{\varepsilon}(\mathbf{E} \cdot \vec{\nabla}) \varepsilon=-(\mathbf{E} \cdot \vec{\nabla}) \ln \varepsilon \\
& \vec{\nabla}^{2} \mathbf{E}+\vec{\nabla}((\mathbf{E} \cdot \vec{\nabla}) \ln \varepsilon)-\frac{1}{c^{2}} \varepsilon \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0
\end{aligned}
$$

- Use above for P polarized light (E has component along gradient.
- For S polarization or no gradient, eliminate blue term.

Helmholtz (scalar) equation

- We will ignore vector components of field
- S polarization or no strong index gradients
- No boundary conditions (e.g. waveguides)
- Some limit on angular range, tight focusing

$$
\nabla^{2} U-\frac{\varepsilon}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} U=0
$$

- Monochromatic (for now)

$$
\nabla^{2} U+\frac{\varepsilon}{c^{2}} \omega^{2} U=\nabla^{2} U+k^{2} U=0
$$

This is an equation for sourcefree wave propagation

- Green's function satisfies

$$
\left(\nabla^{2}+k^{2}\right) G=-\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

This adds a δ-fcn source $G(r)$ is the wave emitted from this point source.

Green's theorem

- Mathematical basis for diffraction
- Start with divergence theorem

$$
\int_{V} \nabla \cdot \mathbf{A} d V=\oint_{S} \mathbf{A} \cdot \mathbf{n} d a
$$

- Let $\mathbf{A}=\psi \nabla \chi \quad$ with ψ, χ scalar functions
$\int_{V} \nabla \cdot \mathbf{A} d V=\int_{V} \nabla \cdot(\psi \nabla \chi) d V=\int_{V}\left[\psi \nabla^{2} \chi+(\nabla \psi) \cdot(\nabla \chi)\right] d V$
$\oint_{S} \mathbf{A} \cdot \hat{\mathbf{n}} d a=\oint_{S}(\psi \nabla \chi) \cdot \hat{\mathbf{n}} d a=\oint_{S} \psi \frac{\partial \chi}{\partial n} d a \quad$ Gradient only in direction normal to surface
- Now interchange ψ, x then subtract
n points out from surface
$\oint_{S}\left(\psi \frac{\partial \chi}{\partial n}-\chi \frac{\partial \psi}{\partial n}\right) d a=\int_{V}\left[\psi \nabla^{2} \chi-\chi \nabla^{2} \psi\right] d V$
Let $\psi \rightarrow U, \chi \rightarrow G$ $\mathrm{G}=$ Green's function

Using Green's function for wave equation

- For linear differential equation, put $\delta\left(x-x^{\prime}\right)$ as source term. $G(x)$ is effectively impulse response.
- Get answer for general inhomogeneous function by convolving G with source distribution
- Different choices of G are possible (assess accuracy)
- Kirchhoff:
- Ideal spherical wave

$$
G\left(P_{1}\right)=\frac{e^{i k r_{01}}}{r_{01}}
$$

- Discontinuity at origin
- Let $\mathrm{S}^{\prime}=\mathrm{S}+\mathrm{S}_{\varepsilon}$, then take limit small ε
- This excludes source point, so inside V^{\prime}

$$
\begin{aligned}
& \left(\nabla^{2}+k^{2}\right) G=0 \rightarrow \nabla^{2} G=-k^{2} G \\
& \left(\nabla^{2}+k^{2}\right) U=0 \rightarrow \nabla^{2} U=-k^{2} U
\end{aligned}
$$

Figure 3.5 Surface of integration.

Computing diffraction integral

- Green's thm:

$$
\begin{gathered}
\oint_{S^{\prime}}\left(U \frac{\partial G}{\partial n}-G \frac{\partial U}{\partial n}\right) d a=\int_{V}\left[U \nabla^{2} G-G \nabla^{2} U\right] d V \\
\nabla^{2} G=-k^{2} G \quad \nabla^{2} U=-k^{2} U
\end{gathered}
$$

- For separate regions, $S^{\prime}=S+S_{\varepsilon}$

$$
-\oint_{S_{e}}\left(U \frac{\partial G}{\partial n}-G \frac{\partial U}{\partial n}\right) d s=\oint_{S}\left(U \frac{\partial G}{\partial n}-G \frac{\partial U}{\partial n}\right) d s
$$

- For a point in S^{\prime},
$G\left(P_{1}\right)=\frac{e^{i k r_{01}}}{r_{01}} \rightarrow \frac{\partial G\left(P_{1}\right)}{\partial n}=\cos \left(\hat{\mathbf{n}}, \mathbf{r}_{01}\right)\left(i k-\frac{1}{r_{01}}\right) \frac{e^{i k r_{01}}}{r_{01}}$
- If the point P_{1} is on S_{ε},

$$
\cos \left(\hat{\mathbf{n}}, \mathbf{r}_{\mathbf{0 1}}\right)=-1
$$

$G\left(P_{1}\right)=\frac{e^{i k \varepsilon}}{\varepsilon} \quad \rightarrow \frac{\partial G\left(P_{1}\right)}{\partial n}=\left(\frac{1}{\varepsilon}-i k\right) \frac{e^{i k \varepsilon}}{\varepsilon}$

Figure 3.5 Surface of integration.

Helmholtz/Kirchhoff diffraction integral

- Take the limit of arbitrarily small ε

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \oint_{S_{\varepsilon}}\left(U \frac{\partial G}{\partial n}-G \frac{\partial U}{\partial n}\right) d s=\lim _{\varepsilon \rightarrow 0} 4 \pi \varepsilon^{2}\left[U\left(P_{0}\right)\left(\frac{1}{\varepsilon}-i k\right) \frac{e^{i k \varepsilon}}{\varepsilon}-\frac{e^{i k \varepsilon}}{\varepsilon} \frac{\partial U\left(P_{0}\right)}{\partial n}\right] \\
& =4 \pi \lim _{\varepsilon \rightarrow 0}\left[U\left(P_{0}\right)(1-i k \varepsilon) e^{i k \varepsilon}-\varepsilon e^{i k \varepsilon} \frac{\partial U\left(P_{0}\right)}{\partial n}\right]=4 \pi U\left(P_{0}\right)
\end{aligned}
$$

- Now put this into the Green's function surface integral

$$
\begin{aligned}
& \oint_{S_{e}}\left(U \frac{\partial G}{\partial n}-G \frac{\partial U}{\partial n}\right) d s=\oint_{s}\left(G \frac{\partial U}{\partial n}-U \frac{\partial G}{\partial n}\right) d s \\
& U\left(P_{0}\right)=\frac{1}{4 \pi} \oint_{s}\left(\frac{e^{i k_{010}}}{r_{01}} \frac{\partial U}{\partial n}-U \frac{\partial}{\partial n}\left(\frac{e^{i k_{01}}}{r_{01}}\right)\right) d s
\end{aligned}
$$

- The field at P_{0} can be determined by integrating around any surface that surrounds it.

Diffraction by a plane screen

$$
U\left(P_{0}\right)=\frac{1}{4 \pi} \oint_{S_{1}+S_{2}}\left(G \frac{\partial U}{\partial n}-U \frac{\partial G}{\partial n}\right) d s
$$

Intuitively, we don't expect much contribution from S_{2} : assume only outgoing waves on this surface.

Kirchhoff approach:
Assume field is incident from left on S_{1}

- $\quad U$ and $d U / d n$ are the same as incident
- no contribution from opaque region outside opening Σ.
- Integrate only over Σ

Trouble: this restriction ends up being unphysical. Leads to alternative choices of Green's functions

Figure 3.6 Kirchhoff formulation of diffraction by a plane screen.

Very little distinction between approaches when $r_{01} \gg \lambda$

Diffraction formulas

- Kirchhoff

$$
G\left(P_{1}\right)=\frac{e^{i k_{r_{01}}}}{r_{01}} \rightarrow \frac{\partial G\left(P_{1}\right)}{\partial n}=\cos \left(\hat{\mathbf{n}}, \mathbf{r}_{01}\right)\left(i k-\frac{1}{r_{01}}\right) \frac{e^{i k_{01}}}{r_{01}} \approx i k \cos \left(\hat{\mathbf{n}}, \mathbf{r}_{01}\right) \frac{e^{i k r_{01}}}{r_{01}}
$$

$$
U\left(P_{0}\right)=\frac{1}{4 \pi} \oint_{\Sigma}\left(G \frac{\partial U}{\partial n}-U \frac{\partial G}{\partial n}\right) d s=\frac{1}{4 \pi} \oint_{\Sigma}\left(\frac{\partial U}{\partial n}-i k U \cos \left(\hat{\mathbf{n}}, \mathbf{r}_{01}\right)\right) \frac{e^{i k r_{01}}}{r_{01}} d s
$$

- For illumination of Σ by a point source at P_{2},
$U\left(P_{0}\right)=\frac{A}{i \lambda} \oint_{\Sigma}\left(\frac{\cos \left(\hat{\mathbf{n}}, \mathbf{r}_{01}\right)-\cos \left(\hat{\mathbf{n}}, \mathbf{r}_{21}\right)}{2}\right) \frac{e^{i k\left(r_{01}+r_{21}\right)}}{r_{01} r_{21}} d s$

$$
U\left(P_{1}\right)=A \frac{e^{i k_{\Sigma_{11}}}}{r_{21}}
$$

- Sommerfeld: avoid unphysical constraint on U

$$
U\left(P_{0}\right)=\frac{A}{i \lambda} \oint_{\Sigma} \cos \left(\hat{\mathbf{n}}, \mathbf{r}_{01} \frac{e^{i k\left(r_{01}+r_{21}\right)}}{r_{01} r_{21}} d s \quad U\left(P_{0}\right)=-\frac{A}{i \lambda} \oint_{\Sigma} \cos \left(\hat{\mathbf{n}}, \mathbf{r}_{21}\right) \frac{e^{i k\left(r_{01}+r_{21}\right)}}{r_{01} r_{21}} d s\right.
$$

Obliquity factors modifying Huygens

- The diffraction equations are generated by mathematical constructs that help solve the wave equation
- Adapt $1^{\text {st }}$ Sommerfeld equation:
$U\left(P_{0}\right)=\frac{A}{i \lambda} \oint_{\Sigma} \frac{e^{i k k_{21}}}{r_{21}} \frac{e^{i k r_{01}}}{r_{01}} \cos \left(\hat{\mathbf{n}}, \mathbf{r}_{01}\right) d s \rightarrow \frac{A}{i \lambda} \oint_{\Sigma} U\left(P_{1}\right) \frac{e^{i k r_{01}}}{r_{01}} \psi(\theta) d s$
- Extra added function: obliquity factor $\quad \rightarrow$ plane wave incident
- Kirchhoff $\psi=\frac{1}{2}\left(\cos \left(\hat{\mathbf{n}}, \mathbf{r}_{01}\right)-\cos \left(\hat{\mathbf{n}}, \mathbf{r}_{21}\right)\right) \rightarrow \frac{1}{2}(1+\cos \theta)$
- Sommerfeld $1 \quad \psi=\cos \left(\hat{\mathbf{n}}, \mathbf{r}_{01}\right) \rightarrow \cos \theta$
- Sommerfeld 2

$$
\psi=-\cos \left(\hat{\mathbf{n}}, \mathbf{r}_{21}\right) \rightarrow 1
$$

- If we had real dipole emitters:

$$
E \sim \frac{e^{i k r}}{r} \cos \theta \quad \text { But here, } \theta \text { is measured from oscillator direction. }
$$

Constraints on diffraction integrals

- These integrals are very accurate in many practical situations but...
- R >> λ : the approach doesn't work for "near-field" situations, e.g. NSOM, nanophotonics, RF or THz waves where the structures are close in size to the wavelength.
- Boundary conditions, contributions from screen surface: sometimes the physical nature of the screen can be important. Example: surface plasmon waves can be excited on metal surfaces, propagate through hole, then be re-radiated on other side.
- Metamaterials, photonic crystals...

Use RF approaches to directly solve Maxwell equations in these cases.

Paraxial, slowly-varying approximations

- Assume
- waves are forward-propagating:

$$
\mathbf{E}(\mathbf{r}, t)=\mathbf{A}(\mathbf{r}) e^{i\left(k z-\omega_{0} t\right)}+\mathrm{c} . \mathrm{c} .
$$

- Refractive index is isotropic

$$
\frac{\partial^{2}}{\partial z^{2}} \mathbf{A}+2 i k \frac{\partial}{\partial z} \mathbf{A}-k^{2} \mathbf{A}+\nabla_{\perp}{ }^{2} \mathbf{A}+\frac{n^{2} \omega_{0}{ }^{2}}{c^{2}} \mathbf{A}=0
$$

- Fast oscillating carrier terms cancel (blue)
- Slowly-varying envelope: compare red terms
- Drop $2^{\text {nd }}$ order deriv if $\frac{2 \pi}{\lambda} \frac{1}{L} A \gg \frac{1}{L^{2}} A$
- This ignores:
- Changes in z as fast as the wavlength
- Counterpropagating waves

$$
2 i k \frac{\partial}{\partial z} \mathbf{A}+\nabla_{\perp}{ }^{2} \mathbf{A}=0
$$

Fresnel diffraction integral

- Fresnel approximation (near field)
- Expand the spherical wave in paraxial approximation (in exponential)
- Let denominator be $\quad\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \sim z-z^{\prime}=L \quad \cos \theta \simeq 1$
- Input field: $E\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=u\left(x^{\prime}, y^{\prime}, z^{\prime}\right) e^{-i k\left(z-z^{\prime}\right)}$

$$
\begin{aligned}
& u(x, y, z)=\frac{i}{\lambda L} \iint u\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \exp \left[-i k \frac{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}}{2 L}\right] d x^{\prime} d y^{\prime} \\
& u(x, y, z)=\frac{i}{\lambda L} \mathrm{e}^{-i \frac{x^{x^{2}+y^{2}} \frac{2}{2 L}}{} \iint u\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \mathrm{e}^{-i k \frac{x^{\prime}+y^{\prime 2}}{2 L}} \mathrm{e}^{-i \frac{k}{L}\left(x x^{\prime}+y y^{\prime}\right)} d x^{\prime} d y^{\prime}}
\end{aligned}
$$

Fraunhofer diffraction integral

$$
u(x, y, z)=\frac{i}{\lambda L} \mathrm{e}^{-i k^{\frac{k^{2}}{x^{2}} \frac{y^{2}}{2 L}}} \iint u\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \mathrm{e}^{-i k^{\frac{x^{2}}{}+y^{y^{2}}}} 2 L \mathrm{e}^{-\frac{k}{L}\left(x x^{\prime}+y y^{\prime}\right)} d x^{\prime} d y^{\prime}
$$

- In the "far field", we approximate the sum of paraxial spherical waves as a sum of plane waves
- Assume field in input plane is confined to a radius a
- If $\frac{k a^{2}}{2 L}=\frac{\pi a^{2}}{\lambda} \frac{1}{L} \ll 1$ then we drop quadratic phases.
$u(x, y, z)=\frac{i}{\lambda L} \iint u\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \exp \left[-i\left(\frac{k x}{L} x^{\prime}+\frac{k y}{L} y^{\prime}\right)\right] d x^{\prime} d y^{\prime}$
- Result: far field is a Fourier transform of the input field
- "spatial frequencies"

$$
\beta_{x}=k \frac{x}{L}=k \sin \theta_{x} \quad \beta_{y}=k \frac{y}{L}=k \sin \theta_{y}
$$

Example: sum of dipole radiators

- Add fields from 10 individual sources

High-density of radiators

- Combine 50 sources over same distance

Fresnel zone shows shadow boundary, diffraction fringes

Far field evolves more like a beam, with single-slit diffraction.

High density of radiators, Gaussian envelope

- Gaussian amplitude envelope eliminates diffraction fringes

