Pulse propagation: t/w domains

- Dispersion in a system will stretch a short pulse:

2mm glass

Chirped pulse

- Linear propagation is best represented in ω space:

$$
E_{\text {out }}(\omega)=A\left(\omega-\omega_{0}\right) e^{i \phi(\omega)}
$$

Spectral phase

$$
\phi(\omega)=k L=\frac{\omega}{c} n(\omega) L
$$

Stretching/compression for chirped-pulse amplification

- Increase pulse duration to lower peak power
- Recompress after amplifier to get short pulse

Grating compressor: optical path depends on wavelength
spatial chirp mid-way through temporal chirp at end

Compressor optical layout

Tilted window: ray propagation

- Calculate phase shift caused by the insertion of the window into an interferometer.
- Ray optics:
- Add up optical path for each segment
- Subtract optical path w/o window

$$
\begin{gathered}
\Delta d=n_{2} L_{A B}+n_{1} L_{B C}-n_{1} L_{A B^{\prime}}-n_{1} L_{B^{\prime} C^{\prime}} \\
L_{A B}=\frac{L_{w}}{\cos \theta_{2}} \quad L_{A B^{\prime}}=\frac{L_{w}}{\cos \theta_{1}} \\
L_{B C}=L_{B^{\prime} C^{\prime}}+L_{B B^{\prime}} \sin \theta_{1}
\end{gathered}
$$

- Use Snell's Law to reduce to:

$$
\phi(\omega)=\frac{\omega}{c} \Delta d(\omega)=\frac{\omega}{c} L_{w}\left(n_{2}(\omega) \cos \theta_{2}(\omega)-n_{1}(\omega) \cos \theta_{1}(\omega)\right)
$$

Tilted window: wave propagation

- Write expression for tilted plane wave

$$
E(x, z)=E_{0} \exp \left[i\left(k_{x} x+k_{z} z\right)\right]=E_{0} \exp \left[i \frac{\omega}{c} n\left(x \sin \theta_{2}+z \cos \theta_{2}\right)\right]
$$

- Snell's Law: phase across surfaces is conserved

$$
\begin{aligned}
k_{x} x & =\frac{\omega}{c} n \sin \theta \quad \text { is constant } \\
\Delta \phi & =\left(k_{2} \cos \theta_{2}\right) L_{w}-\left(k_{1} \cos \theta_{1}\right) L_{w} \\
\Delta \phi(\omega) & =\frac{\omega}{c} L_{2}\left(n_{2} \cos \theta_{2}-n_{1} \cos \theta_{1}\right)
\end{aligned}
$$

- This approach can be used to calculate phase of prism pairs and grating pairs

Grating pair: ray propagation

- Try to calculate phase shift by computing optical path of rays through system.
- Ray optics:
- Add up optical path for each segment
- Subtract optical path w/o window
$\Delta d=n_{2} L_{A B}+n_{1} L_{B C}-n_{1} L_{A B^{\prime}}-n_{1} L_{B^{\prime} C^{\prime}}$
- Use diffraction grating equation
$n_{2} \sin \theta_{2}=m \frac{\lambda}{d}+n_{1} \sin \theta_{1}$
$\frac{\omega}{c} n_{2} \sin \theta_{2}=m \frac{2 \pi}{d}+\frac{\omega}{c} n_{1} \sin \theta_{1}$
$\phi(\omega)=\frac{\omega}{c} L_{w}\left(n_{2} \cos \theta_{2}-n_{1} \cos \theta_{1}\right)+m \frac{2 \pi}{d} \tan \theta_{2}$
Extra term: this method doesn't work for gratings!

For raytracing: calculate paths, divide by local group delay.

A simple approach to calculating dispersive phase

- Two approaches:
- Raytrace, calculate group delay
- Calculate phase shift
- Tilted window: can be used as a basic module for constructing the spectral phase of a system

- To insert inside a dispersive structure: include $\theta_{1}(\omega)$
- Grating compressor:
same formalism, even with diffraction

Durfee et al, Optics Express v16, 18004 (2008)

Superposition of modules: prism phase

- Start with a tilted window of glass
$\phi(\omega)=\frac{\omega}{c} L_{1}\left(n(\omega) \cos \theta_{2}(\omega)-\cos \theta_{1}\right)$

Durfee et al, Optics Express v16, 18004 (2008)

Superposition of modules: prism phase

- Insert a "window" of air inside the glass

$$
\phi(\omega)=\frac{\omega}{c} L_{1}\left(n(\omega) \cos \theta_{2}(\omega)-\cos \theta_{1}\right)+\frac{\omega}{c} L_{2}\left(\cos \theta_{4}(\omega)-n(\omega) \cos \theta_{3}(\omega)\right)
$$

Durfee et al, Optics Express v16, 18004 (2008)

Superposition of modules: prism phase

- Express phase in terms of L_{p} and β
$\phi(\omega)=\frac{\omega}{c} L_{1}\left(n(\omega) \cos \theta_{2}(\omega)-\cos \theta_{1}\right)+\frac{\omega}{c} L_{2}\left(\cos \theta_{4}(\omega)-n(\omega) \cos \theta_{3}(\omega)\right)$
$\phi_{\text {prisms }}(\omega)=\frac{\omega}{c} L_{p} \cos \beta(\omega) \quad \begin{gathered}\text { conventional } \\ \text { prism phase }\end{gathered}$

$$
\begin{gathered}
-\frac{\omega}{c} L_{p} \cos \left(\theta_{1}+\theta_{\text {ref }}-\alpha\right) \\
\text { Non-dispersive }
\end{gathered}
$$ ray θ 's:

Expression reduces correctly to ϕ (tilted window) for $L_{2}=0$ Durfee et al, Optics Express v16, 18004 (2008)

Spectral phase of grisms

- Unfold reflection gratings to represent as a transmission gratings
- Construct grism phase as a superposition of tilted, dispersive windows

$$
\phi_{g r i s m s}(\omega)=\frac{\omega}{c} L_{g} \cos \beta(\omega)
$$

Same form as for prism pair Calculate exit angle using Snell and Durfee et al, Optics Express v16, 18004 (2008) grating eqn for internal angles

