MATH-332: Linear Algebra
Chapter: 4

Vector Spaces

Section 4.5: The Dimension of a Vector Space

pgs. 256-262
July 13, 2009

\left.| | Lecture: Finite Dimensional Vector Spaces |
| :--- | :--- |
| Definition of Dimension | |\(\right\left.\} \begin{array}{l}The Basis Theorem

Dimension of NulA, ColA\end{array}\right\}\)

Section Goals

- Understand how the dimension of a vector space is defined and how this number can be used to characterize the properties of that space regardless of the elements found within.
- Study the concept of dimension using the classical matrix spaces and from this understand the interplay between the null and column spaces.

Section Objectives

- Define the dimension of a vector space in terms of equivalency of elements in any basis and provide examples of finite and infinite dimensional spaces.
- State theorem 4.5.11 on page 259 , which relates the dimension of a space to its subspaces.
- Calculate the dimension of the null and column spaces of a matrix and begin the presentation of the so-called rank-nullity theorem.

