MATH 225 - Differential Equations
Homework 4, Field 2008

Bifurcations - Linearity - Undetermined Coefficients - Integrating Factors

1. For the one-parameter family $\frac{d y}{d t}=y^{2}-a y+4, \quad y, a \in \mathbb{R}$,
(a) Find the bifurcation value(s).
(b) For each bifurcation value, draw phase lines for values of the parameter slightly smaller than, slightly larger than, and at the bifurcation value. Make sure to label your graph and classify any equilibrium points.
2. Given that $\frac{d y}{d t}=a(t) y$. Show that if $y_{1}(t)$ and $y_{2}(t)$ are both solutions to the homogenous linear differential equation then the linear combination $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ where $c_{1}, c_{2} \in \mathbb{R}$ is also a solution. ${ }^{1}$
3. Determine the general solution for the following linear differential equations:
(a) $\frac{d y}{d t}-2 y=t^{2}+3 e^{t}$
(b) $y^{\prime}=5 y+3 e^{5 t}$
(c) $y^{\prime}=-3 y+2 \cos (2 t)$
(d) $y^{\prime \prime}-3 y^{\prime}+2 y=0$

Hint: For (d) assume that $y(t)=e^{r t}, r \in \mathbb{R}$, and show that $y^{\prime \prime}-3 y^{\prime}+2 y=0 \Longleftrightarrow r^{2}-3 r+2=0$. Solve for r to find two possible solutions. In this case the general solution is $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t), c_{1}, c_{2} \in \mathbb{R}$.
4. Using integrating factors, solve the following differential equation or initial-value problem.
(a) $\frac{d y}{d t}=\frac{t^{3} y}{1+t^{4}}+2 t^{3}$
(b) $\frac{1}{2 t} \frac{d y}{d t}=y+\frac{3}{2} e^{t^{2}}, \quad y(0)=1$
5. A 1000 gallon tank initially contains a mixture of 450 gallons of cola and 50 gallons of cherry syrup. Cola is added at the rate of 8 gallons per minute, and cherry syrup is added at the rate of 2 gallons per minute. At the same time, a well mixed solution of cherry cola is withdrawn at the rate of 5 gallons per minute.
(a) Write down the initial-value problem that models the rate of cherry syrup flowing through the tank.
(b) Solve the initial-value problem.
(c) When is the tank full?
(d) How much cherry syrup is in the tank when it is full?

[^0]
[^0]: ${ }^{1}$ This result is true for any homogenous linear differential equation.

