The geometry of reflected and transmitted waves has been obtained using FRESNEL'S FORMULAE
only the wave character of light; however, nothing about the amplitudes
of the waves has been determined. We must use Maxwell’s equations and
the boundary conditions associated with these equations to learn about the
amplitudes of the reflected and transmitted waves. The geometry to be used
in this discussion is shown in Figure 3-4. Two media are separated by an
interface, the x, p plane at z = 0, whose normal fi = k is the unit vector along
the z direction. The incident wave is labeled with an i, the reflected wave
by an r, and the transmitted wave by a t. The incident wave’s propagation
vector k;, which we assume to lie in the x, z plane, and the normal to the
interface establish the plane of incidence.

The electric field vectors for each of the three waves have been decom-
posed into two components: one in the plane of incidence, labeled P, and
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one normal to the plane and parallel to the unit vectori along the y axis,
labeled N. This is an extension of the technique, discussed in Chapter 2,
of using orthogonal vectors to describe the polarization of a light wave.
(According to custom, the two polarizations are labeled 7 for parallel to
the plane of incidence and ¢ for perpendicular to the plane of incidence.
The Greek letter o denotes perpendicular because s is the first letter of the
German word senkrecht. We will use N and P in this book in place of the
Greek letters.) The upper half-plane has a velocity of propagation v; and an
index of n; and the lower half-plane has a velocity of propagation v, and an
index of n,.
The actual vectors to be used are as follows:

Incident Wave

ki =k; (i sin 6 — k cos ) (3-11)
Ei =Ep (i cos 6 + k sin 6) + Enj (3-12)
Reflected Wave
k. =k (i sin 6 + k cos 6) (3-13)
E, =Ep, (—i cos 6 + k sin 6) + Ey, ] (3-14)
Transmitted Wave
ke =k, (i sin 6 ~ k cos 6, (3-15)
E: =Ep (i cos 6, + k sin 6) + Enj (3-16)

The boundary conditions associated with Maxwell’s equations are the
following:

1. From V- D = p, the normal components of D must be continuous if there
are no surface charges. We use D = €E to write this boundary condition

[6(E+ E) - ¢E)-a=0 (3-17)
Evaluating the dot product vields
€ sin 6; (Ep; + Ep,) = ¢ sin 6 Ep, (3-18)

2. From the Maxwell’s equation containing V X E, we see that the tangential
component of E is continuous. This boundary condition is written



(Ei+E +E)xa=0 (3-19)
Each one of the vector products is of the form
Exi = E,i-E,j
Evaluating the cross product yields
(Exi + Eny = E) i ~ (Ep cos 6~ Ep, cos 6~ En cos 8)} = 0
Both vector components must be equal to zero, thus,
Eni + Ex: = En, (3-20)
(Ep — Ep;) cos 6 = Ep, cos 6, (3-21)

. From V-B = 0, the normal component of B must be continuous, We use
(2-17) to rewrite the normal component of B in terms of E

ME
B = T kXE-n

The boundary condition is then written

V i€
k (kixE; + k,XE,) —

M€

(kzXE:)J =0 (3-22)

Each of the vectors will be of the form
(kXE)*h= [ (Eyke — Elde)) i + (Ephx = Ecks) § + (Eck, — E, k) ﬁ]-ﬁ =—E k,

V#i€i [Eni + Eny) sin 6, = _/pe Eny sin 8, (3-23)
We can simplify this relationship by rewriting Snell’s law (3-10) as

sin 6 _ e

sin 6; M€
Equation (3-23) can then be seen to be the same as (3-20). This
boundary condition is redundant and we need not use it.

. From the Maxwell’s equation containing VX H, we see that the tangential
component of H is continuous if there are no surface currents. The
tangent component of H can be written in terms of the electric field

i#k—“—ékx!sxﬁ

(3-24)

Hxfi= — xf =

F

(3-25)
The boundary condition is then written

l /ey _1l /e .
[k‘\/‘: (kiXE; + k,XE,) m/; (k.xE:)an-o

(kXE)xf = [ (Evk: = Eky) i + (Epke — Exk)§ + (Exk, — Eyk,) ﬁ]x&

=(Eke~ Exks)i - Eje,j = 0 (3-26)

FRESNEL'S FORMULAE 69



70 REFLECTION AND REFRACTION

Each vector component must equal zero. The x component gives

\/iT [Ep + Ep) = \/gsn (3-27)
i Mt

If we apply Snell’s law (3-24) to (3-18), we obtain the same equation as
(3-27). Therefore, we do not need boundary condition 1.
The y component of (3-26) gives

\/g (Eni — Eny) cos 6 = \/E En: cos 6 (3-28)
M Ha

Of the four boundary conditions of Maxwell’s equations only two are
needed to obtain the relationships between the incident, reflected, and trans-
mitted waves; the conditions utilized are that the tangential components of
E and H are continuous across the boundary. The boundary conditions
place independent requirements on the polarizations parallel to and normal
to the plane of incidence and generate two pair of equations that are treated
separately. There are three unknowns but only two equations for each polar-
ization; thus, the amplitudes of the reflected and transmitted light can only
be found in terms of the incident amplitude.

o Case {Perpendicular Polarization)

For this component of the polarization, E is perpendicular to the plane of
incidence, that is, the x, z plane. This means that E is everywhere normal
to fi and parallel to the boundary surface between the two media. [This
case could be labeled the transverse electric field (TE) case; we do not
use this notation because it implies that the wave may not be a transverse
electromagnetic wave (2 TEM wave); instead, we use the subscript N. The
TE notation will be reserved for inhomogeneous waves in a guiding structure,
discussed in Chapter 5.]

The second and fourth boundary conditions provide in (3-20) and
(3-28) relationships between the various normal electric fields. The ampli-
tude of reflected and transmitted light will be found, using these equations,
in terms of the incident amplitude. We use Snell’s law (3-24) to modify
(3-28)

_ _p.,sinai_coso,_ _ M tan g |
Eni EN'_;.ucosU.-sino.EM_mtan En -29)

6
Adding (3-29) to (3-20) yields

ZE‘\Y - (1 + M)E‘w

M tan 6,
L — (3-30)
En; 14 Hiten 6

M tan 6

As was shown in Chapter 2, for the majority of optical materials, u; = wu,
and the equation simplifies to

E 2 sin 6, 6;
ty = LNt _ 2 sin 6, cos

Ex = an(6+ 8 &:31)



The amplitude ratio ty is called the amplitude transmission coefficient for
perpendicular polarization.

Now (3-30) can be substituted back into (3-20) to obtain the amplitude
ratio for the reflected light.

B

EN,+EM=
1+

>

;i tan
tan
1 - ’5 tan g)

F'ttan 6‘}

= W (3-32)

M tan 6,

S
|

Ene
En:

Again when u; = u, we obfain the ratio of reflected amplitude to the
incident amplitude, which is called the amplitude reflection coefficient for
perpendicular polarization.

En, _ —sin(8 - 6)

n=—-=

E]\E sin (6} = 0{)

(3-33)

= Case (Parallel Polarization)

For this component of polarization, E is everywhere parallel to the plane of
incidence; however, B and H are everywhere normal to fi and parallel to
the boundary between the two media. [This case could be labeled the trans-
verse magnetic field (TM) case, but we will use the subscript P for the same
reason we did not use the TE notation. See Chapter 5, where the TM nota-
tion is utilized for inhomogeneous waves.] The second boundary condition
provides (3-21) that can be written
cos 6,

Ep — Ep = m Ep, (3-34)

Applying Snell’s law (3-24) to (3-27) vields

- .n A
Hi€ i sin

Ep + Ep, = = e sin 6, Ep (3-35)
Adding this equation to (3-34) vields the desired ratio of amplitudes
_g_p, _ 2 cos 6 sin 6, (3-36)
Pi

cos 6, sin 8,+£cosﬂ,sin6,-
For the usual situation of y; = 4, the amplitude transmission coefficient for
parallel polarization is
Ep, 2 cos @ sin 6,
tp=— =

En ~ sin(6; + 6) cos(6~ 8 (i)
Substituting (3-37) into (3-35) produces the amplitude reflection ratio

& _ (ﬁ:) sin 26, — sin 26,
Ep

e (3-38)
sin 26, + ‘ ;J sin 26,
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FIGURE 3-5a. Reflection coefficient for n; = 1.0 and n; = 1.5, ie., the ratio of index of
refraction is 1.5.

The assumption of w; =~ yu, (from now on this assumption will be used)

results in the amplitude reflection coefficient for parallel polarization of

E_Pr — tan (6; — 6,)

EPF tan (af + 6)
The amplitude reflection coefficients are plotted as a function of the

incident angle in Figure 3-5. Figure 3-5a corresponds to the condition of

=

(3-39)

1.0 F

ne > n,

Reflection coefficient »

Incident angle (in degrees)

(b)

FIGURE 3-5b. Reflection coefficient for n; = 15and n; = 1, i.e., ratio of index of refraction
is 0.67.
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7 < n; and Figure 3-5b corresponds to the condition of n, > n.. As can be
s2en by examining the two figures, the behavior of the reflection coefficient
= quite different for these two conditions,

The plots of the reflection coefficients shown in Figure 3-5a and 3-5p
emonstrate that a sign change occurs for rp, labeled || in the figure, for a
range of angles that depend on the relative index of refraction, This phase
hange is important because Tp must pass through zero for the phase change
D occur.

We will discuss in detail the behavior of the amplitude reflection coeffi-
Sent when 6 = 0° rp = 0, and r = 1, which occurs if n; = n,, as shown in
Figure 3-5b.

The fraction of the incident amplitude reflected and transmitted at a surface
s not experimentally available. The parameter that can be measured is the
=nergy. At first, we might think that we could simply square the ratios we

(S)eir = (S) |cos g

where the expression for the average Poynting vector is obtained from
(2-26). (We assume that = g, resulting in

which is defined as the impedance of vacuum.) The energy flow across the
boundary can be obtained from the following equations:

v {Up) =¢S;) cos 01=%' {ﬁ | Ei|%cos 6

(3-40)

- =N [& 2
v U =(S,)cos 6 = ) \/;I E,[%cos g (3-41)
b Uiy =(Se) cos 6 = /ﬁ | E:|?cos 6, (3-42)

Each of these three equations apply separately to the normal and paralie]

We define reflectivity as

Uy _|E|? .
—@"IE,-P (3-43)
and transmissivity as
= uUy (i.‘cos 6 |E.|2
= viU) ~ ‘m}cos 0, | E |2 (3-44)

[The quantities defined by (3-43) and (3-44) are ratios of the Poynting
vectors and therefore assume a wave of known frequency and phase.
Experimentally, the ratios of the incident flux to the reflected and transmjt-

REFLECTED AND
TRANSMITTED
ENERGY
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Interference between waves reflected from the interfaces of a dielectric film
can be used to reduce the reflection from an optical surface. This concept
can be extended to a multilayer dielectric coating to produce any desired
reflection property, and in this appendix, several procedures for designing
multilayer coatings will be described.

Fraunhofer produced antireflection layers on glass surfaces by acid etch-
ing in 1817 but it was not until 1891 that Dennis Taylor associated the
reduced reflectivity with an increased transparency. Full utilization of the con-
cept of interference filters had to wait until the late 1940s and early 1950s
when techniques were developed that allowed the production of rugged
dielectric films. Cold mirrors designed to reflect the visible wavelengths and
transmit the infrared wavelengths were one of the first products of this tech-
nology and today are found in every dentist’s lamp. In the 1970s the mul-
tilayer coating technology had developed to a point that allowed the mass
production of laser mirrors with very low absorption. Coating technology is
now being used to produce durable mirrors for copy machines and conduc-
tive coatings to provide frost-free aircraft windshields.

We have introduced the theory of multilayer interference filters in Chap-
ters 3 and 4. This theory will now be used to develop several methods for
designing a filter. Only the reflectivity of the filter will be considered, but
enough information will be given to allow transmission to also be calculated.
We need a notation that will allow the manipulaticn of a large number of
dielectric layers. To see how the notation is generated, we rewrite (3-33) as

_ Ene _ nicos 6 — n, cos 6,

Eni  njcos 6 + n, cos 6

and (3-39) as

. W .
_Ep _ cos 6 cos 6
P = Ex n ny
cos 6  cos 6
First, we defined the ith medium as the incident medium and the (i + 1)
medium as the transmitted medium. The two reflection coefficients can be
written as one coefficient by defining an effective index. The effective index
for normal polarization is

N; = «[j cos ¢
and for parallel polarization is
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N

COos 9,'

=

where the notation indicates that the dielectric films can have a complex
index of refraction. This notation allows generalized equations for the ampli-
wude reflection coefficient and transmission coefficient to be defined at the
nterface between medium iand i + 1

= Ni=Nisy e —p = Niz1 - N
TNENa T TN+ N erla)
=2y A (4A-1b)

"“TNENe Y TNTNG

When 6, = 0, the generalized equation (4A-1) agrees with (3-45) and
(3-46).] The subscripts allow an unlimited number of interfaces. We wiill
start at j = 0 and for m layers there will be m + 2 indices of refraction ng,
M, -+, Nm, Nm+1, Where ng is the refractive index in the incident medium
and ny, +1 is the refractive index of the substrate medium, that is, the medium
on which the dielectric layers will be deposited. This notation has allowed
the design and construction of multilayer stacks as large as m > 100.
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TABLE 4A.1 Thin-Film Materials

Index Wavelength
Material of Refraction Range, um
Cryolite(NazAlFg) 1.35 0.15-14
Magnesium fluoride (MgFa) 1.38 0.12-8
Silicon dioxide (SO} 146 0.17-8
Thorium fluoride (ThF;) 1.52 0.15-13
Aluminum oxide (Al,03) 1.62 0.15-6
Silicon monoxide (Si0) 19 05-3
Zirconium dioxide (Z:O;) 2.00 0.3-7
Cerium dioxide (CeO;) 22 0.4-16
Titanium dioxide (TiO3) 23 0.4-12
Zinc sulfide (ZnS) 23 0.4-12
Zinc selenide (ZnSe) 244 0.5-20
Cadmium telluride (CdTe) 2.69 1.0-30
Silicon (Si) 35 1.1-10
Germanium (Ge) 4.05 1.5-20
Lead telluride (PbTe) 5.1 3.9-20+
Matrix Approach

A quantitative approach to designing multilayer filters that allows the com-
puter generation of the spectral characteristics of the filters is the use of
matrices. The approach is called the method of resultant waves or the E* E-
matrix method.'® The boundary conditions associated with Maxwell's equa-
tions, as stated in Chapter 4, are placed into a matrix equation format. To
accomplish the reformulation, the boundary conditions are manipulated so
that the information about the angle of incidence and the polarization are

Sl ReE TR
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FIGURE 4A-5. Geometry for waves in a dielectric film.

placed into an effective index of refraction as defined in (4A-1). The fields on
each side of the boundary can then be represented by plane waves incident
normal to the interface as shown in Figure 4A-5.

Each dielectric layer has two interfaces but the two interfaces, as shown
in Figure 4A-5, are formally identical so we need only configure the problem
for a general interface and repeat the calculation m times for the m interfaces
of a dielectric stack m — 1 layers high.

We use the boundary conditions (3-20, 3-21, 3-27, 3-28) from Chapter
3 to produce the boundary conditions at a generalized interface.

n; cos G(E. —Ej.) = nisq cos 6.1(ENE - END)  (4a-9)

Ejhs + El- =EN) + Ei2 (4A-5)
(Eps = Ep-) cos 6 = (ER! — E5) cos 6.y (4A-6)
(Epy + Ep_)n; = (ERL + EBN nysy (4A-7)

For the normal components,

Ei, - [nicos 8 + ni.y cos 9;3_1)5;-+1 . (nicos 6 —nj:1 cos GM)E,H
e 2n; cos 0; | 2n; cos 6 e

(4A-8)

\

E, - (n,‘ cos @ — Ni+1 COS 014-1) i+l - (nj cos 6; + Ni+1 €cos 651 i1
- 2n; cos 6 | i 2n; cos 6 L

(4A-9)
For the parallel components,

EL, = (m cos 6h+1 + Njsq COS 0i)E'++l " (n,ﬂ cos 6 — n; cos 9:+1} i+1

2n; cos 6 2n; cos 6, § =
(4A-10)

: Ni+1 €OS & — n; cos Gy .. (N €OS 6.1 + Njsq oS )
EL = i+l s i+1 ( +1
e ( 2n; cos 6 ) Ep. + r 2n; cos 6 ) B
(4A-11)

Using the definitions in (4A-1a) and (4A-1b), we can simplify our notation
and reduce (4A-9) through (4a-12) to the following two equations:
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- i+1
E'f! 4 nEW

Ei, 5 (4A-12)
Efl + E*1
E! = — 5 (4A-13)

We may combine (4A-12) and (4A-13) into a matrix equation for the

interface
; 1 n
EL t; ot E': !
E ] |n 1flgm
ti L
Normally, this is written in a more compact notation

Ei = I'EH»l
where [; is the ith interface matrix

1 n
LTI 7
I = (4A-14)
n 1
t ot

The problem of finding the values of A. and A_ in Figure 4A-5 is a simple
propagation problem. The fields A, and E_ must be modified by the phase
shift they experience after propagating through the dielectric layer, here

labeled 1
A. =e"EL  El =ghig_ or A.=e@El
These equations can be combined into a matrix equation
A= TE'

which can be generalized for the ith dielectric layer by defining a transmission
matrix of the form

0 e
The effect of an m layer dielectric film can be described by the matrix

equation
E9 B M{EQ
E0) TlEL

»
T=ft O ) (4A-15)

(4A-16)

where
M= IO'TI‘11°T2" : "Im—l'Tm"m

and the E/ are the fields in the final medium. The reflection coefficient of the
stack is

P=E0 (4A-17)

e A A S AR A it

ELm
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To simplify the problem without affecting the desired ratios, we normally
assume E/. = 1 and Ef =0,

It is simple to program a personal computer to explore the properties
of various combinations of films. We will sketch out a very simple example.
The objective is to design a multilayer stack made up of alternating layers
of index n; and ny with the light incident normal to the stack. The thickness
of each layer is selected to be one-quarter wavelength thick at the design
wavelength. A schematic representation of the film stack would have the
following index layers:

no|n1| n2]"l]~-~lnllng

The first step in the solution of the problem is to form three matrices. The
front layer matrix is

F=LT, = 1{1 +m —(1-n;)
2l1-n; —(1+m)
The back layer matrix is
R I ]
2n —(n1 = ng) —(n; + ng)

There are N pairs of layers of index m and nz and the matrix for one pair
is

n nz ny n
m . Nz m_n

nz ny no n
M = L To5T, = - L ' . :

m_ np m + nz
nz m ng ny

For N pair of the n, Inz layers,

N (o AN s N ;i AN

(m 4@ ‘m) _;@)

my = CEONIn2) Tng ] Tl T g
(N N o N N
) - () (2 (2

\nz | \m \n2 n |

We will assume that n, = 1, which allows us to write the transmission
(4A-15) for this problem as

N . K ’ \ ’ Ny
. (2] s (o) ()Y ()
EY _ ()N 1lng ) T ip) Nz 'nl,’ [E‘L)
E°® "ﬁ'a.’v_ (3",” ["ﬂr-;- {,Q-il\’ ‘Ef_'
nz| ‘ny \ng nl‘,
We can now write the reflection coefficient of the stack as
{&;N_ (nz ¥
n \n; !
p= 2o M _ (4A-18)

!vnli.'\’ ]nZJ
\nz) * s
2] g
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FIGURE 4A-6. The reflectivity as a function of the number of pairs of low-index and high-
index films N is shown for a stack with a low-index film of 1.46 and a high-index film of 2.3,

We know that one of the indices is larger than the other. For large N, one
of the two ratios will dominate and the reflectivity will approach 1, as shown
in Figure 4A-6 where the reflectivities for N = 1 to 10 are displayed. As
the difference between n; and ny increases, so does the wavelength range
over which the reflectivity can be made nearly 1. A simple computer model
using (4A-18) generated the curve in Figure 4A-7, which demonstrates the
dependence of the reflectivity on the index ratio.

Reflectivity R

Ry
0 | I | | | | I J

1 2 3 4 5
FIGURE 4A-7. The reflectivity of a dielectric stack as a function of the ratio of the index of
refrection of the two materials used to construct the stack. The low index of refraction layer
was set at 1.35 and the high index of refraction layer was allowed to range from 1.38 to 5.1.
Two different size stacks were used, one with N = 2 and the other with N = 4.




