Reading today: $G 9.1$
Tomorrow: $G 9.2$
Wave Equation:
Cenrïdanger: $\frac{-\hbar^{2}}{2^{\mu}} \nabla^{2} \psi+(v-E) \psi=\varnothing$
Describes wares.
Wave Equation in general:

$$
\nabla^{2} f=\frac{1}{v^{2}} \frac{\partial^{2} f}{\partial t^{2}}
$$

Show that any function $g\left(x-y t^{t}\right)$ satisfies the $1-0$ ware eau $\frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{J_{x}^{2}} \frac{\partial^{2} f}{\partial t^{2}}$.

$$
\begin{aligned}
& \frac{\partial^{2} g}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} g}{\partial t^{2}} \\
& \int \frac{\partial g}{\partial x}=\frac{\partial g}{\partial(x-v t)} \frac{\partial(x-v t)}{\partial x}=\frac{\partial g}{\partial u} \frac{\partial u}{\partial x}=\frac{\partial g}{\partial u} \\
& \frac{\partial u}{\partial x}=1 ; \quad \frac{\partial u}{\partial t}=-v \\
& \frac{\partial^{2} g}{\partial x}=\frac{\partial^{2} g}{\partial u^{2}} \frac{\partial u}{\partial x}=\frac{\partial^{2} g}{\partial v^{2}} \\
& \frac{\partial^{2} g}{\partial x^{2}}=\frac{\partial^{2} g}{\partial u^{2}}\left(\frac{\partial u}{\partial x}\right)^{2} \text { only if } u(x)^{\text {is }} \\
& \text { It 皆linear in } t \text { so } \\
& \frac{\partial^{2} g}{\partial t^{2}}=\frac{\partial^{2} g}{\partial u^{2}}\left(\frac{\partial u}{\partial t}\right)^{2}=v^{2} \frac{d^{2} g}{\partial v^{2}} \\
& \rightarrow 1=1 \\
& (x+v z) \text { left going wow } \\
& (-x-v t) \text { left }
\end{aligned}
$$

Title: Jul 6-5:41 PM (1 of 3)

What can waves do?
Reflect, Transmit, travel $\uparrow \quad \uparrow$
What happens at boundaries. $\neq \varnothing$

$$
\begin{gathered}
\text { Reflected } \\
\tilde{f}_{R e f}=\hat{A}_{R} e^{i\left(-R_{1} z-\omega t\right)}
\end{gathered}
$$

Solve for $\tilde{A}_{R}, \tilde{A}_{T}: B C$: $\tilde{f}\left(0^{-}, t\right)=\tilde{f}\left(0^{t}, t\right)$

$$
\frac{\partial \tilde{f}}{\partial z}(\overline{0}, t)=\frac{\partial \tilde{f}}{\partial z}\left(0^{+}, t\right)
$$

$$
\tilde{A}_{R}=\left(\frac{V_{2}-v_{1}}{v_{2}+V_{1}}\right) \tilde{A}_{I} ; \tilde{A}_{T}=\left(\frac{2 v_{2}}{v_{2}+V_{1}}\right) \widehat{A}_{I}
$$

