
Maxwell's Equations to wave eqn 
•  The induced polarization, P,  contains the effect of the medium:  
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Maxwell's Equations in a Medium 
•  The induced polarization, P,  contains the effect of the medium:  

•  Sinusoidal waves of all frequencies are solutions to the wave equation 
•  The polarization (P) can be thought of as the driving term for the 
solution to this equation, so the polarization determines which 
frequencies will occur. 
•  For linear response, P will oscillate at the same frequency as the input. 

•  In nonlinear optics, the induced polarization is more complicated: 

•  The nonlinear terms lead to new frequencies and phase modulation.    
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Linear propagation of quasi-
monochromatic fields 

•  Earlier we had worked with single-frequency fields, for 
example: 

•  Now we want to work with field with a more general 
temporal shape. 
–  Assume linear polarization, plane waves in z-direction 

•  For now, look at only the linear part of P :  

•  Group linear terms together  
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Wave equation in frequency space 
•  Represent all signals in ω space: 

•  Now we can connect D and E: 

•  Put these expressions into the WE, do time derivatives 
inside integral: 

•  Now work to get back into time domain.  
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Field with slowly varying envelope 
•  We went to ω space to be able to easily include dispersion 

•  Represent field in terms of a slowly-varying amplitude 

–  By shift theorem: 

•  Put this into the wave equation:  
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Taylor expansion of dispersion 
•  Do a Taylor expansion for k(ω): 

•  Insert this expansion into the ω-domain WE: 

–  Terms in red cancel,  

k ω( ) = k0 + ω −ω 0( )k1 + D D = 1
n!

ω −ω 0( )n kn
n=2

∞

∑ D includes all high-
order dispersion 

k2 ω( ) = k02 + 2k0k1 ω −ω 0( ) + k12 ω −ω 0( )2 + 2k0D + 2k1 ω −ω 0( )D + D2

small 

  
∂2 A
∂z2 + 2ik0

∂A
∂z

+ k ω( )2
− k0

2( )A = 0

  
∂2 A
∂z2 + 2ik0

∂A
∂z

+ 2k0k1 ω −ω 0( ) + k1
2 ω −ω 0( )2

+ 2k0D + 2k1 ω −ω 0( )D( )A = 0



Transform back to time domain 

•  Now inverse FT to go back to time domain 
–  Multiply by     , integrate  
–  Note that 

 

•  For now, ignore high-order dispersion 

–  This can be simplified by changing to a coordinate system moving 
with the pulse at the group velocity 
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Moving reference frame 
•  Change to reference frame moving at the group velocity 

–  Change coordinates:  
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Simpler equation for envelope.  
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Slowly-varying envelope approx: SVEA 
•  So far, we haven’t made any approximation about the 

duration of the pulse (or its bandwidth) 
–  Assuming a carrier frequency doesn’t itself introduce 

approximations  

•  Compare magnitude of components of equation:  
–  In general, the envelope A(z,t) will evolve over some length scale 
L (e.g. b/c of GVD): 

–  So if   we can ignore second derivative term 

–  Dropping this eliminates any counter-propagating solution: no 
back-reflections included in this approximation.  
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SVEA again 
•  We still have an extra time derivative 

–  Look at ratio: 
–  vg ~ vph in order of magnitude 

•  Timescale for change τp 
•  If ω0τp>>1, we can drop the time derivative. 

•  This approximation requires small fractional bandwidth. 

•  All this says is that the pulse shape doesn’t change, but we 
assumed there was no high-order dispersion.   
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Dispersive propagation in the time 
domain 

•  Before changing to the moving coordinate system, we had 

–  In moving ref frame, and with SVEA, this is now: 

–  Term in blue is small as in previous slide, so dispersive 
propagation follows the equation:  

–  For second-order dispersion only,  
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Nonlinear propagation 
•  Polarization has a nonlinear component 

•  Treat   as a source term in all previous eqns. 

•  Working with the carrier and envelope:   
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Nonlinear Schrodinger Equation (NLS) 

•  Add NL contribution to RHS:  

•  With only 2nd order term in dispersion: 
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Operator form 



Change in propagation constant is 
averaged over the mode. SPM 
applies to whole mode.  

Δn ∝ n2 F x, y( ) 2



Properties of hollow-core waveguides 



Output spectrum and pulse shape 




