Maxwell's Equations to wave eqn

- The induced polarization, \mathbf{P}, contains the effect of the medium:

$$
\begin{array}{ll}
\vec{\nabla} \cdot \mathbf{E}=0 & \vec{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
\vec{\nabla} \cdot \mathbf{B}=0 & \vec{\nabla} \times \mathbf{B}=\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \frac{\partial \mathbf{P}}{\partial t}
\end{array}
$$

Take the curl:

$$
\vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=-\frac{\partial}{\partial t} \vec{\nabla} \times \mathbf{B}=-\frac{\partial}{\partial t}\left(\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \frac{\partial \mathbf{P}}{\partial t}\right)
$$

Use the vector ID:

$$
\begin{aligned}
& \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B}) \\
& \vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=\vec{\nabla}(\vec{\nabla} \cdot \mathbf{E})-(\vec{\nabla} \cdot \vec{\nabla}) \mathbf{E}=-\vec{\nabla}^{2} \mathbf{E}
\end{aligned}
$$

$$
\vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}} \quad \text { "Inhomogeneous Wave Equation" }
$$

Maxwell's Equations in a Medium

- The induced polarization, \mathbf{P}, contains the effect of the medium:

$$
\vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}}
$$

- Sinusoidal waves of all frequencies are solutions to the wave equation
- The polarization (\mathbf{P}) can be thought of as the driving term for the solution to this equation, so the polarization determines which frequencies will occur.
- For linear response, \mathbf{P} will oscillate at the same frequency as the input.

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0} \chi \mathbf{E}
$$

- In nonlinear optics, the induced polarization is more complicated:

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0}\left(\chi^{(1)} \mathbf{E}+\chi^{(2)} \mathbf{E}^{2}+\chi^{(3)} \mathbf{E}^{3}+\ldots\right)
$$

- The nonlinear terms lead to new frequencies and phase modulation.

Linear propagation of quasimonochromatic fields

- Earlier we had worked with single-frequency fields, for example:

$$
\mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos \left(k_{z} z-\omega t\right)
$$

- Now we want to work with field with a more general temporal shape.
- Assume linear polarization, plane waves in z-direction
- For now, look at only the linear part of P :

$$
\frac{\partial^{2} E}{\partial z^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} P_{L}}{\partial t^{2}}
$$

$$
D=\varepsilon_{0} E+P_{L}
$$

- Group linear terms together

$$
\rightarrow \frac{\partial^{2} E}{\partial z^{2}}-\frac{1}{\varepsilon_{0} c^{2}} \frac{\partial^{2} D}{\partial t^{2}}=0
$$

$$
\frac{1}{\varepsilon_{0} \mu_{0}}=c^{2}
$$

Wave equation in frequency space

- Represent all signals in ω space:

$$
\begin{aligned}
& E(z, t)=\frac{1}{2 \pi} \int E(z, \omega) e^{-i \omega t} d \omega \\
& D(z, t)=\frac{1}{2 \pi} \int D(z, \omega) e^{-i \omega t} d \omega
\end{aligned}
$$

- Now we can connect D and $E: \quad D(z, \omega)=\varepsilon_{0} \varepsilon(\omega) E(z, \omega)$
- Put these expressions into the WE, do time derivatives inside integral:

$$
\frac{\partial^{2}}{\partial t^{2}} E(z, t)=\frac{1}{2 \pi} \int E(z, \omega)\left(\frac{\partial^{2}}{\partial t^{2}} e^{-i \omega t}\right) d \omega
$$

$$
\frac{\partial^{2}}{\partial z^{2}} E(z, \omega)+\varepsilon(\omega) \frac{\omega^{2}}{c^{2}} E(z, \omega)=0 \quad k^{2}(\omega)=\varepsilon(\omega) \frac{\omega^{2}}{c^{2}}
$$

- Now work to get back into time domain.

Field with slowly varying envelope

- We went to ω space to be able to easily include dispersion

$$
\frac{\partial^{2}}{\partial z^{2}} E(z, \omega)+k^{2}(\omega) E(z, \omega)=0
$$

- Represent field in terms of a slowly-varying amplitude

$$
E(z, t)=A(z, t)\left(e^{i\left(k_{0} z-\omega_{0} t\right)}+\text { c.c. }\right) \quad A(z, t)=\frac{1}{2 \pi} \int A(z, \omega) e^{-i \omega t} d \omega
$$

- By shift theorem:

$$
E(z, \omega)=A\left(z, \omega-\omega_{0}\right) e^{i k_{0} z}
$$

- Put this into the wave equation:

$$
\frac{\partial^{2}}{\partial z^{2}}\left(A\left(z, \omega-\omega_{0}\right) e^{i k_{0} z}\right)+k^{2}(\omega) A\left(z, \omega-\omega_{0}\right) e^{i k_{0} z}=\left(\frac{\partial^{2} A}{\partial z^{2}}+2 i k_{0} \frac{\partial A}{\partial z}-k_{0}^{2}+k^{2} A\right) e^{i k_{0} z}
$$

$$
\frac{\partial^{2} A}{\partial z^{2}}+2 i k_{0} \frac{\partial A}{\partial z}+\left(k^{2}-k_{0}^{2}\right) A=0
$$

Taylor expansion of dispersion

- Do a Taylor expansion for $k(\omega)$:

$$
\begin{array}{ll}
k(\omega)=k_{0}+\left(\omega-\omega_{0}\right) k_{1}+D & D=\sum_{n=2}^{\infty} \frac{1}{n!}\left(\omega-\omega_{0}\right)^{n} k_{n} \quad \text { D includes all high- } \\
\text { order dispersion }
\end{array} k^{2}(\omega)=k_{0}^{2}+2 k_{0} k_{1}\left(\omega-\omega_{0}\right)+k_{1}^{2}\left(\omega-\omega_{0}\right)^{2}+2 k_{0} D+2 k_{1}\left(\omega-\omega_{0}\right) D+D^{2} \longrightarrow \text { small }
$$

- Insert this expansion into the ω-domain WE:
$\frac{\partial^{2} A}{\partial z^{2}}+2 i k_{0} \frac{\partial A}{\partial z}+\left(k(\omega)^{2}-k_{0}^{2}\right) A=0$
- Terms in red cancel,
$\frac{\partial^{2} A}{\partial z^{2}}+2 i k_{0} \frac{\partial A}{\partial z}+\left(2 k_{0} k_{1}\left(\omega-\omega_{0}\right)+k_{1}^{2}\left(\omega-\omega_{0}\right)^{2}+2 k_{0} D+2 k_{1}\left(\omega-\omega_{0}\right) D\right) A=0$

Transform back to time domain

$$
\frac{\partial^{2} A}{\partial z^{2}}+2 i k_{0} \frac{\partial A}{\partial z}+\left(2 k_{0} k_{1}\left(\omega-\omega_{0}\right)+k_{1}^{2}\left(\omega-\omega_{0}\right)^{2}+2 k_{0} D+2 k_{1}\left(\omega-\omega_{0}\right) D\right) A=0
$$

- Now inverse FT to go back to time domain
- Multiply by $e^{-i\left(\omega-\omega_{0}\right) t}$, integrate
- Note that $\quad F T^{-1}\left\{\omega^{n} A(\omega)\right\}=\left(i \frac{\partial}{\partial t}\right)^{n} \tilde{A}(t) \quad \tilde{D}=\sum_{n=2}^{\infty} \frac{1}{n!} k_{n}\left(i \frac{\partial}{\partial t}\right)^{n}$ $\frac{\partial^{2} \tilde{A}}{\partial z^{2}}+2 i k_{0} \frac{\partial \tilde{A}}{\partial z}+\left(2 i k_{0} k_{1} \frac{\partial}{\partial t}-k_{1}^{2} \frac{\partial^{2}}{\partial t^{2}}+2 k_{0} \tilde{D}+2 i k_{1} \tilde{D} \frac{\partial}{\partial t}\right) \tilde{A}=0$
- For now, ignore high-order dispersion

$$
\left(\frac{\partial^{2}}{\partial z^{2}}+2 i k_{0} \frac{\partial}{\partial z}+2 i k_{0} k_{1} \frac{\partial}{\partial t}-k_{1}^{2} \frac{\partial^{2}}{\partial t^{2}}\right) \tilde{A}=0
$$

- This can be simplified by changing to a coordinate system moving with the pulse at the group velocity

Moving reference frame

- Change to reference frame moving at the group velocity

$$
\left(\frac{\partial^{2}}{\partial z^{2}}+2 i k_{0}\left(\frac{\partial}{\partial z}+k_{1} \frac{\partial}{\partial t}\right)-k_{1}^{2} \frac{\partial^{2}}{\partial t^{2}}\right) \tilde{A}=0
$$

- Change coordinates:

$$
\begin{array}{ll}
z^{\prime}=z & \frac{\partial}{\partial z}=\frac{\partial z^{\prime}}{\partial z} \frac{\partial}{\partial z^{\prime}}+\frac{\partial \tau}{\partial z} \frac{\partial}{\partial \tau}=\frac{\partial}{\partial z^{\prime}}-k_{1} \frac{\partial}{\partial \tau} \\
\tau=t-k_{1} z \quad \frac{\partial}{\partial t}=\frac{\partial}{\partial \tau} \quad \frac{\partial^{2}}{\partial z^{2}}=\left(\frac{\partial}{\partial z^{\prime}}-k_{1} \frac{\partial}{\partial \tau}\right)^{2}=\frac{\partial^{2}}{\partial z^{\prime 2}}-2 k_{1} \frac{\partial}{\partial z^{\prime}} \frac{\partial}{\partial \tau}+k_{1}^{2} \frac{\partial^{2}}{\partial \tau^{2}} \\
\left(\frac{\partial^{2}}{\partial z^{\prime 2}}-2 k_{1} \frac{\partial}{\partial z^{\prime}} \frac{\partial}{\partial \tau}+k_{1}^{\prime} \frac{\partial^{2}}{\partial \tau^{2}}+2 i k_{0}\left(\frac{\partial}{\partial z^{\prime}}-k_{l} \frac{\partial}{\partial \tau}+k_{y} \frac{\partial}{\partial \tau}\right)-k_{1}^{2} \frac{\partial^{2}}{\partial \tau^{2}}\right) \tilde{A}=0 \\
\left(\frac{\partial^{2}}{\partial z^{\prime 2}}-2 k_{1} \frac{\partial}{\partial z^{\prime}} \frac{\partial}{\partial \tau}+2 i k_{0} \frac{\partial}{\partial z^{\prime}}\right) \tilde{A}=0 & \rightarrow\left(\frac{\partial^{2}}{\partial z^{\prime 2}}+2 i k_{0} \frac{\partial}{\partial z^{\prime}}\left(1+i \frac{k_{1}}{k_{0}} \frac{\partial}{\partial \tau}\right)\right) \tilde{A}=0 \\
& \text { Simpler equation for envelope. }
\end{array}
$$

Slowly-varying envelope approx: SVEA

- So far, we haven't made any approximation about the duration of the pulse (or its bandwidth)
- Assuming a carrier frequency doesn't itself introduce approximations
- Compare magnitude of components of equation:
- In general, the envelope $A(z, t)$ will evolve over some length scale L (e.g. b/c of GVD): $\partial / \partial z^{\prime} \sim 1 / L$
$\left(\frac{\partial^{2}}{\partial z^{\prime 2}}+2 i k_{0} \frac{\partial}{\partial z^{\prime}}\left(1+i \frac{k_{1}}{k_{0}} \frac{\partial}{\partial \tau}\right)\right) \tilde{A}=0 \quad \frac{\partial^{2}}{\partial z^{\prime 2}} \sim \frac{1}{L^{2}} \quad 2 k_{0} \frac{\partial}{\partial z^{\prime}} \sim \frac{4 \pi}{\lambda_{0} L}$
- So if $L \gg \frac{\lambda_{0}}{4 \pi}$

SVEA $\frac{\partial^{2}}{\partial z^{\prime 2}} \rightarrow 0 \quad 2 i k_{0} \frac{\partial}{\partial z^{\prime}}\left(1+i \frac{k_{1}}{k_{0}} \frac{\partial}{\partial \tau}\right) \tilde{A}=0$

- Dropping this eliminates any counter-propagating solution: no back-reflections included in this approximation.

SVEA again

- We still have an extra time derivative

$$
2 i k_{0} \frac{\partial}{\partial z^{\prime}}\left(1+i \frac{k_{1}}{k_{0}} \frac{\partial}{\partial \tau}\right) \tilde{A}=0
$$

- Look at ratio:
- $v_{g} \sim v_{\text {ph }}$ in order of magnitude

$$
\frac{k_{1}}{k_{0}}=\frac{d k /\left.d \omega\right|_{0_{0}}}{n \omega_{0} / c}=\frac{1}{\omega_{0}} \frac{\mathrm{v}_{p h}}{\mathrm{v}_{g}} \approx \frac{1}{\omega_{0}}
$$

- Timescale for change T_{p}

$$
\partial / \partial \tau \sim 1 / \tau_{p}
$$

- If $\omega_{0} T_{p} \gg 1$, we can drop the time derivative.

$$
\omega_{0} \tau_{p} \approx 2 \frac{\omega_{0}}{\Delta \omega}
$$

- This approximation requires small fractional bandwidth.

$$
\rightarrow 2 i k_{0} \frac{\partial}{\partial z^{\prime}} \tilde{A}=0
$$

- All this says is that the pulse shape doesn't change, but we assumed there was no high-order dispersion.

Dispersive propagation in the time domain

- Before changing to the moving coordinate system, we had

$$
\left(\frac{\partial^{2}}{\partial z^{2}}+2 i k_{0} \frac{\partial}{\partial z}+2 i k_{0} k_{1} \frac{\partial}{\partial t}-k_{1}^{2} \frac{\partial^{2}}{\partial t^{2}}+2 k_{0} \tilde{D}+2 i k_{1} \tilde{D} \frac{\partial}{\partial t}\right) \tilde{A}=0 \quad \tilde{D}=\sum_{n=2}^{\infty} \frac{1}{n!} k_{n}\left(i \frac{\partial}{\partial t}\right)^{n}
$$

- In moving ref frame, and with SVEA, this is now:

$$
\left(2 i k_{0} \frac{\partial}{\partial z^{\prime}}+2 k_{0} \tilde{D}+2 i k_{1} \tilde{D} \frac{\partial}{\partial \tau}\right) \tilde{A}=0 \rightarrow\left(2 i k_{0} \frac{\partial}{\partial z^{\prime}}+2 k_{0} \tilde{D}\left(1+i \frac{k_{1}}{k_{0}} \frac{\partial}{\partial \tau}\right)\right) \tilde{A}=0
$$

- Term in blue is small as in previous slide, so dispersive propagation follows the equation:

$$
\left(2 i k_{0} \frac{\partial}{\partial z^{\prime}}+2 k_{0} \tilde{D}\right) \tilde{A}=0
$$

- For second-order dispersion only,

$$
\tilde{D}=\sum_{n=2}^{\infty} \frac{1}{n!} k_{n}\left(i \frac{\partial}{\partial t}\right)^{n} \rightarrow \frac{1}{2!} k_{2}\left(i \frac{\partial}{\partial t}\right)^{2}=-\frac{1}{2} k_{2} \frac{\partial^{2}}{\partial t^{2}} \quad \frac{\partial \tilde{A}}{\partial z^{\prime}}=-i \frac{1}{2} k_{2} \frac{\partial^{2} \tilde{A}}{\partial t^{2}}
$$

Nonlinear propagation

- Polarization has a nonlinear component

$$
\frac{\partial^{2} E}{\partial z^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} P_{L}}{\partial t^{2}}+\mu_{0} \frac{\partial^{2} P_{N L}}{\partial t^{2}}
$$

- Treat $\mu_{0} \frac{\partial^{2} P_{N L}}{\partial t^{2}}$ as a source term in all previous eqns.

$$
\tilde{P}_{N L}(z, t)=3 \varepsilon_{0} \chi^{(3)}|\tilde{A}(z, t)|^{2} \tilde{A}(z, t) e^{i\left(k_{0}-\omega_{0} t\right)} \quad n_{2} I=\frac{3 \chi^{(3)}}{2 n_{0}}|\tilde{A}|^{2}
$$

- Working with the carrier and envelope:

$$
\begin{aligned}
& \tilde{P}_{N L}(z, t)=\tilde{p}(z, t) e^{i\left(k_{0} z-\omega_{0}\right)} \\
& \frac{\partial \tilde{P}_{N L}}{\partial t}=\left(-i \omega_{0} \tilde{p}+\frac{\partial \tilde{p}}{\partial t}\right) e^{i\left(k_{0} z-\omega_{0}\right)}=-i \omega_{0}\left(1+\frac{i}{\omega_{0}} \frac{\partial}{\partial t}\right) \tilde{p} e^{i\left(k_{k_{0}}-\omega_{0} t\right)} \\
& \rightarrow \frac{\partial^{2} \tilde{P}_{N L}}{\partial t^{2}}=-\omega_{0}{ }^{2}\left(1+\frac{i}{\omega_{0}} \frac{\partial}{\partial t}\right)^{2} \tilde{p} e^{i\left(k_{0} z-\omega_{0} t\right)} \approx-\omega_{0}{ }^{2} \tilde{p} e^{i\left(k_{0} z-\omega_{0} t\right)} \quad \text { Drop red term by } \\
& \text { SVEA }
\end{aligned}
$$

Nonlinear Schrodinger Equation (NLS)

$$
\begin{aligned}
& =-\left.3 \chi^{(3)} \frac{\omega_{0}{ }^{2}}{c^{2}} \tilde{A}\right|^{2} \tilde{A} e^{\left(\sigma_{3}-\sigma_{0}\right)}
\end{aligned}
$$

- Add NL contribution to RHS:

$$
\begin{aligned}
& \left(2 i k_{0} \frac{\partial}{\partial z^{\prime}}+2 k_{0} \tilde{D}\right) \tilde{A}=-\left.3 \chi^{(3)} \frac{\omega_{0}^{2}}{c^{2}} \tilde{A}\right|^{2} \tilde{A} \\
& \left(i \frac{\partial}{\partial z^{\prime}}+\tilde{D}\right) \tilde{A}=-\frac{\omega_{0}}{c} n_{2} I \tilde{A}
\end{aligned}
$$

- With only $2^{\text {nd }}$ order term in dispersion:

$$
\frac{\partial \tilde{A}}{\partial z^{\prime}}=-i \frac{1}{2} k_{2} \frac{\partial^{2} \tilde{A}}{\partial t^{2}}+i \frac{\omega_{0}}{c} n_{2} I \tilde{A}
$$

Operator form

$$
\partial_{z} A_{0}=[\hat{D}+\hat{N}] A_{0}
$$

Few-Cycle Pulses by External Compression

Sandro De Silvestri, Mauro Nisoli, Giuseppe Sansone, Salvatore Stagira, and Orazio Svelto

F.X. Kärtner (Ed.): Few-Cycle Laser Pulse Generation and Its Applications, Topics Appl. Phys. 95, 137-178 (2004)

Properties of hollow-core waveguides

Output spectrum and pulse shape

Compression of optical pulses chirped by self-phase modulation in fibers

W. J. Tomlinson,* R. H. Stolen, and C. V. Shank

ATधT Bell Laboratories, Holmdel, New Jersey 07733

