Eigenvalues - Eigenvectors - Diagionalization - Spectral Decomposition - Applications

1. Find the eigenvalues and eigenvectors of the following matrix.

$$
\mathbf{A}=\left[\begin{array}{rrr}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]
$$

2. Given,

$$
\mathbf{A}=\left[\begin{array}{rr}
3 & 1 \\
-2 & 1
\end{array}\right]
$$

Determine the eigenvalues and eigenfunctions associated with the system of differential equations $\frac{d \mathbf{x}}{d t}=\mathbf{A} \cdot \mathbf{x}(t)$.
3. Given,

$$
\mathbf{A}=\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 2 & 0 \\
1 & 0 & 0 & 2
\end{array}\right]
$$

If \mathbf{A} is diagonalizable, then determine \mathbf{D} and \mathbf{P} associated with its decomposition $\mathbf{P D P}^{-1}$. Do not find \mathbf{P}^{-1}.
4. Square matrices having columns whose entries sum to 1 are often called stochastic matrices. Those with only non-negative entries, for some power, are called regular stochastic matrices. Given a random process, with an initial state \mathbf{x}_{0}, the application of \mathbf{P} on \mathbf{x}_{0} discretely steps the process forward in time. That is $\mathbf{x}_{n+1}=\mathbf{P} \mathbf{x}_{n}=\mathbf{P}^{n} \mathbf{x}_{0}, n=1,2,3, \ldots$. If a matrix is a regular stochastic matrix then there exists a steady-state vector \mathbf{q} such that $\mathbf{P q}=\mathbf{q}$. This vector determines the long term probabilities associated with an arbitrary inital state \mathbf{x}_{0}. The sequence of states, $\left\{\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n+1}\right\}$, is called a Markov Chain. Given the regular stochastic matrix:

$$
\mathbf{P}=\left[\begin{array}{ll}
.1 & .6 \\
.9 & .4
\end{array}\right]
$$

(a) Show that the steady-state vector of \mathbf{P} is $\mathbf{q}=\left[\begin{array}{ll}\frac{2}{5} & \frac{3}{5}\end{array}\right]^{\mathrm{T}}$.
(b) Find the matrices \mathbf{D} and \mathbf{Q} such that $\mathbf{P}=\mathbf{Q D Q}^{-1}$. That is, diagonalize the matrix \mathbf{P}.
(c) Show that $\lim _{n \rightarrow \infty} \mathbf{P}^{n} \mathbf{x}_{0}=\mathbf{q}$ where $\mathbf{x}_{0}=\left[x_{1}, x_{2}\right]^{\mathrm{T}}$ is an arbitrary vector in \mathbb{R}^{2} such that $x_{1}+x_{2}=1$.
5. Recall the Pauli Spin Matrix from homework 1,

$$
\sigma_{2}=\sigma_{y}=\left[\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right]
$$

(a) Show that σ_{y} is self-adjoint. ${ }^{1}$
(b) Find the orthogonal diagonalization of $\sigma_{y} \cdot{ }^{2}$
(c) Show that $\sigma_{y}=\lambda_{1} \mathbf{x}_{1} \mathbf{x}_{1}^{\mathrm{H}}+\lambda_{2} \mathbf{x}_{2} \mathbf{x}_{2}^{\mathrm{H}}$, where \mathbf{x}_{1} and \mathbf{x}_{2} are the normalized eigenvectors from part (b).

[^0]
[^0]: ${ }^{1}$ Recall that self-adjoint means that $\mathbf{A}=\mathbf{A}^{H}=\overline{\mathbf{A}}^{\mathrm{T}}$. See the linear algebra handout on ticc.mines.edu for the definitions.
 ${ }^{2}$ This will require you to normalize vectors that contain imaginary numbers. Generally to normalize a vector \mathbf{x} we make a new vector $\hat{\mathbf{x}}=\frac{\mathbf{x}}{|\mathbf{x}|}=\frac{\mathbf{x}}{\sqrt{\mathbf{x}^{\mathrm{T}} \mathbf{x}}}$. However, when using vectors with imaginary entries we must use the adjoint in our definition of inner-product. That is, we take a normalized vector to be, $\hat{\mathbf{x}}=\frac{\mathbf{x}}{|\mathbf{x}|}=\frac{\mathbf{x}}{\sqrt{\mathbf{x}^{H} \mathbf{x}}}$. If you do not do this then then your inner-products will become zero and your normalized vectors will be undefined, which I guess they should be in real-space.

