Due: June 30, 2009

Eigenvalues - Eigenvectors - Diagionalization - Spectral Decomposition - Applications

1. Find the eigenvalues and eigenvectors of the following matrix.

$$\mathbf{A} = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

2. Given,

$$\mathbf{A} = \left[\begin{array}{cc} 3 & 1 \\ -2 & 1 \end{array} \right].$$

Determine the eigenvalues and eigenfunctions associated with the system of differential equations $\frac{d\mathbf{x}}{dt} = \mathbf{A} \cdot \mathbf{x}(t)$.

3. Given,

$$\mathbf{A} = \left[\begin{array}{cccc} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{array} \right].$$

If **A** is diagonalizable, then determine **D** and **P** associated with its decomposition PDP^{-1} . Do not find P^{-1} .

4. Square matrices having columns whose entries sum to 1 are often called stochastic matrices. Those with only non-negative entries, for some power, are called *regular* stochastic matrices. Given a random process, with an initial state \mathbf{x}_0 , the application of \mathbf{P} on \mathbf{x}_0 discretely steps the process forward in time. That is $\mathbf{x}_{n+1} = \mathbf{P}\mathbf{x}_n = \mathbf{P}^n\mathbf{x}_0$, $n = 1, 2, 3, \ldots$ If a matrix is a *regular* stochastic matrix then there exists a steady-state vector \mathbf{q} such that $\mathbf{P}\mathbf{q}=\mathbf{q}$. This vector determines the long term probabilities associated with an arbitrary inital state \mathbf{x}_0 . The sequence of states, $\{\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_{n+1}\}$, is called a *Markov Chain*. Given the regular stochastic matrix:

$$\mathbf{P} = \left[\begin{array}{cc} .1 & .6 \\ .9 & .4 \end{array} \right].$$

- (a) Show that the steady-state vector of **P** is $\mathbf{q} = \begin{bmatrix} 2 & 3 \\ \overline{5} & \overline{5} \end{bmatrix}^{\mathrm{T}}$.
- (b) Find the matrices **D** and **Q** such that $P = QDQ^{-1}$. That is, diagonalize the matrix **P**.
- (c) Show that $\lim_{n\to\infty} \mathbf{P}^n \mathbf{x}_0 = \mathbf{q}$ where $\mathbf{x}_0 = [x_1, \, x_2]^{\mathrm{T}}$ is an arbitrary vector in \mathbb{R}^2 such that $x_1 + x_2 = 1$.

5. Recall the Pauli Spin Matrix from homework 1,

$$\sigma_2 = \sigma_y = \left[\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right].$$

- (a) Show that σ_y is self-adjoint. ¹
- (b) Find the orthogonal diagonalization of σ_{ν} .
- (c) Show that $\sigma_y = \lambda_1 \mathbf{x}_1 \mathbf{x}_1^{\mathrm{H}} + \lambda_2 \mathbf{x}_2 \mathbf{x}_2^{\mathrm{H}}$, where \mathbf{x}_1 and \mathbf{x}_2 are the normalized eigenvectors from part (b).

 $^{^{1}}$ Recall that self-adjoint means that $\mathbf{A} = \mathbf{A}^{H} = \bar{\mathbf{A}}^{T}$. See the linear algebra handout on ticc.mines.edu for the definitions.

²This will require you to normalize vectors that contain imaginary numbers. Generally to normalize a vector \mathbf{x} we make a new vector $\hat{\mathbf{x}} = \frac{\mathbf{x}}{|\mathbf{x}|} = \frac{\mathbf{x}}{\sqrt{\mathbf{x}^T \mathbf{x}}}$. However, when using vectors with imaginary entries we must use the adjoint in our definition of inner-product. That is, we take a normalized vector to be, $\hat{\mathbf{x}} = \frac{\mathbf{x}}{|\mathbf{x}|} = \frac{\mathbf{x}}{\sqrt{\mathbf{x}^H \mathbf{x}}}$. If you do not do this then then your inner-products will become zero and your normalized vectors will be undefined, which I guess they should be in real-space.