SHG without phase-matching

Non-depleted pump approximation: treat A, as constant

0> 2d
94, _ — dA2 Ak Integrate: A, (L)=1i AZJ "M dg
aZ k2C kzc 0
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Convert to intensity I, = 280n2c‘A2|2
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1 1 in(AkL/2
S )= p@d) pf sin(akLr2)
2€,n,c 2g,n,c n,c AkL/?2
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. . wyd . 4
As a function of L and fixed |Ak|>0: L(L)= —— 1} —sin’(AkL/2)
2g,nn,c

Yield oscillates:
* Period = “coherence length” L, =2%/Ak
 Amplitude proportional to max( )oc 1/ Aic>



Light created in real crystals
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Note that SH beam is brighter as phase-matching is achieved.



Phase-matching Second-Harmonic
Generation using birefringence
Birefringent materials have different refractive indices for different

polarizations. “Ordinary” and “Extraordinary” refractive indices can be
different by up to 0.1 for SHG crystals.

We can now satisfy the A
phase-matching condition. .

S
Put the highest frequency on the lowest 'GE)
index: for negative uniaxial use the 2
extraordinary polarization g| ! '
for w and the ordinary for 2w: ‘&3 : :

! —

) 20
ne(w,e) — no(zw) Frequency

n, depends on propagation angle, so we can tune for a given w.
Some crystals have n, < n_, so the opposite polarizations work.



Real crystal dispersion data

e Best resource: refractiveindex.info

e Others: crystal manufacturers, Handbook of Optics
Example: B-BBO = barium borate, BaB,0,

0.0184
2 : 2
n, =2.7405 + 212-0.0179 —0.0155 4 A is in micrometers!
012
ne2 =2.3730 + 20 0128 0.0044 A*
sl A~ =0.0156
1.70 n, < n, everywhere, so we

; n, need to angle tune
1.65\

1601




Types of phase matching
* Type 1:

— 2w on low index (n,)

()] )
Ak=271no(a)1)—72ne(a)2,9)

=22, (@,)-n,(0,.0))

— won high (n,) -
— Opposite polarizations (x tensor allows this)
* Type 2:
yp . Ak:&no(a)l)+&ne((ol,9)—&ne((oz,6)
— 2w on low index (n,) ¢ c c

— Project E, equally on both axes (n, and n,)
* Type 3:
— “non-critical” or “90°” phase matching
— Temperature-tuned Ak =22 (n, (0, T)~n,(0,,90,T))
— Only for particular crystals and wa\jelengths



Centro-symmetric media

For second-order response, the potential must have asymmetry.
When the binding potential for the electrons is centrally symmetric,
the response can still be nonlinear, but the order must be odd (39, 5t,
etc).
Consider a central restoring force:

F(r)=-mwir+mb(r-r)r
F(r)=-ma.r,+ mbr;r;r,

l

» force is always directed along rdirection

* Atlarger, forceis less binding.
As with the non-centrosymmetric potential, perform perturbation
expansion.

« x2 does not contribute, so x2=0



Solution of 3" order

* Each term for 15t order solution can be a different frequency

3
50) 4 2]/X(3) +w§x(3) _ b(x(l))

(59 0, 2740, )+ 03 0, ))e ™ =B 5 (0,)4 (0, )5, -

— Note the m, n, p can all be + or —: for example, ®_, =—®,
— Enforce energy conservation, so
®,=0,+0,+0,—(mnp) insummation

e Solutionis

()= 3 b {E(@) B, )Elw,

PO (,)=-Ner(a,)=+ 3 v



Calculation of x!3)

e 3 order NL polarization is
PO (0,)= 3 ybe (E(@.) E(,)Eo,)

* Defined in terms of the susceptibility

Pi(3) (wq) = 802 z %l(Jil) (wq’wm’wn’wp)Ej (a)m)Ek (wn)El (wp)

Jkl (mnp)

* xB)is a tensor:
— i j klare coordinate indices (1, 2, 3 or x, y, z) that correspond to the
directions of the field polarizations: i is output, j, k, | are distinct inputs
— g, m, n, p are frequency indices of the distinct fields
— All indices can potentially be the same
— (mnp) in summation means ®, =0, +®,+O,



x3) tensor

* Convert vector P to summation: e.g.
E(0,)E(o,)= ZEj(wm)Ej(wn): ZkEj<wm)Ek(wn)6jk
» 31 order NL susceptibility is ’
o) £ ni5 S )5 0o
jk (mnpy M D(a)q)D(a)m)D(a)n)D((Up)
Pi(3) (wq) = 802 2 %l(ﬂgd) (wq’wM’wn’wp)Ej (wm)Ek (wn)El (wp)
ikl (mnp)
: ’ Nbe* 6jk6il
g,m’ D(a)q)D(a)m)D(a)n)D(a)p)
e Account for “intrinsic permutation symmetry”
_ Fields Ej(a)m)Ek(a)n)El(a)p) can be in any order
Nbe" 6,0, +6,0,+0,0,
3g,m’ D(a)q)D(a)m)D(a)n)D(a)p)
— 3 terms aren’t there b/c of dot product of fields

(3)
%ijkl

(a)q NORROR ,a)p) =

(3)
Z ijkl

(a)q,wm,wn,wp) =



NL polarization: 2nd order

PP (w,+w,)=¢> > 1% (0, +0,.0,0,)E (0,)E (o,)

ik
Jk (nm)

In this situation, each x(2) is a 3x3 matrix, and the vector form would be written

P?(w,+0,)=¢ > E(0,) 1 (0, +0,;0,0,)E(o,)

(nm)

In matrix form, this would be
%111 %112 %113

})1(2)(0)3=a)1+(02)=80( El(wl) Ez(wl) E3(w1)) X X X
Xizi Xinn X33

%111 %112 %113
+80( El (wZ) E2 (0)2) E3 (0)2) ) Z121 Z122 %123
%131 %132 %133

We need to use as many symmetries as possible to reduce the complexity.
can reduce from ~ 324 terms to 10 or fewer




Summary of intrinsic symmetries for NL tensor

e Real fields and polarization
E(-0,)=E/(0,) P(-0,-0,)=F(0,+,)

P(Z) 0) +w \_8 22%1(;) @ +wm’wn’wm)*Ej(wﬂ)*Ek(wm)*

jk (nm)

PP (-w,-w,)=¢ Z Z (-0, -0, ~0,-0,)E (-0,)E(-0,)

jk (nm)

* Intrinsic permutation symmetry:

— j, kand m, n are dummy indices

13 (0,+0,.0,.0 )E (0)E(0,)=2(0,+0,.0,0, )E (0,)E (0,)

ikj

— Swap j kand n m at same time. Not i and q in this case



Other common symmetries

* Lossless media (not always true)
— Real components of x{2). Usually true if incident frequencies and their
combinations are away from resonances.

— full permutation symmetry: free interchange of all w components, as long
asi, j, k are swapped at same time.

« Kleinmans’s symmetry (if dispersion of x2) can be neglected)

— Dispersion is intrinsically linked to time response. So if we neglect
dispersion, it is the same as assuming NL response is instantaneous.

— In this case, we can permute | j k without also permuting w’s
— This makes x tensors symmetric

* Note:
— From practical perspective of using NL crystals, many desirable crystals are
designed to be transparent, non-dispersive, etc.

— But for characterizing materials, measuring NL response leads to
important information about structure and internal energy levels



Contracted notation: non-dispersive, non-absorbing medium

Non-dispersive: can permute any spatial index (Kleinmann symm)

- like colors have the same value, except black terms are unique

dxxx dxxy
dxyy
/
dxxy xyy
yyy
\
d

XXZ

d.
Z ( d

\ XXX
XzzZ dxxy
\ \ d.\'.\':.
d ' dll
d d21
dl 5

d

xyy

y




Spatial symmetries

Crystal structure leads to spatial symmetries: 32 different crystal point
groups.
Example: 4-fold symmetry around z-axis means X,,,=X,,y
Spatial symmetry affects

* linear optical properties (birefringence, optical activity)

* high-order x tensors

« Even if xis isotropic, x'3) may not be. Ex: XPW generation
Inversion symmetry and x2

P(t)=g,x"E" (1)

* |f medium is centrosymmetric (possesses inversion symmetry), then
P(t) must have same sign as E(t)

~P(1)= e, (~E()
* This means that x{2) must vanish.

2



Symmetry in d-matrices

Biaxial crvstal classes

L) r 0 '\ -'I-' - |

L

Clags 2 --—" ._‘1 . \'.\1 .

class 222 . . . . "*.L .

class Em2 5 g7 . . .

|

q

ciasses

and 23

Uniaxial crystai ctasses (Continued)

T ' classes
classes 6mm . . . .

$and 4 P and L
—a o - - - dmm eo—o @ -
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622 P . class 4 | | .
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Isotropic crystal classes
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FIGURE 1.5.3 Form of the 4y marrix for the 21 crystal classes that lack inversion
gymetry. Small dot: zero coelficient; large dot: nonzerd coefficient: square; coelfi
cient that is zere when Kleinman’s symmetry condition is valid; conneceed svimbols:
numerically equal coefficients, but the open-symbel coefficiont is oppesite in sign
o the closed symbol o which it is joincd. Dashed connections are valid only under
Klcmman’s symunetry conditions. (Afer Zemike and Midwinter, 1973.)



Common NL crystals

KDP, KD*P:
— uniaxial, can grow large crystals, low dispersion.
— Doubling, OPA Pockels cells, ...

BBO:

— uniaxial, high NL coeff good UV transmisson,
— Doubling, OPA, Pockels cells...

KTP:

— biaxial, high NL coeff for typell doubling
LBO:

— biaxial, high damage threshold
LINbO;:

— pockels cells, PPLN

Newer: BiBO, ZGP

Suppliers: Casix, Castech, EKSMA, Quantum Tech, Cleveland
Crystals...



Evaluating crystals for applications

Transparency for spectral region

Orientations that allow for NL response (tensors), strength of
NL coefficient

Phase-matching geometries allowed

Damage threshold (max intensity)

Thermal issues (change in index with temperature)

CW: birefringent walk-off (sets limit for crystal length)
Angular acceptance: limits divergence of input, crystal length

Short pulses: dispersion/phase matching bandwidth,
connected to group velocity walkoff

Dimensions of crystal, cost



