Unstable resonators and generalied ABCD matrices

Unstable resonators

negative and positive branch

Generalized ABCD matrices

Gaussian mirror

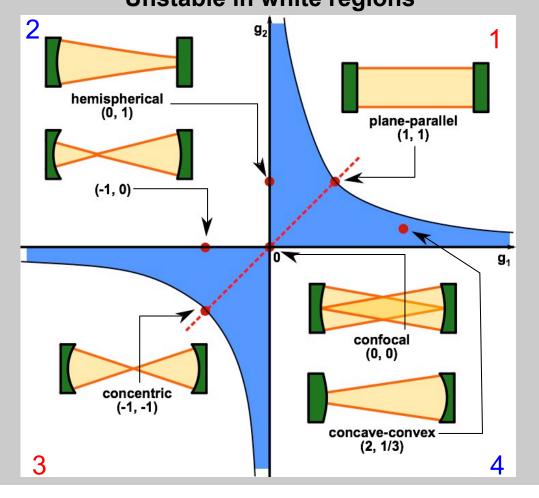
Gaussian gain distribution

parabolic index guiding

gain guiding

Unstable resonators

• Cavity is stable if $-1 < \frac{A+D}{2} < 1$ Stable in shaded regions Unstable in white regions



$$-1 < 2g_1g_2 - 1 < 1$$

$$0 \le g_1g_2 \le 1$$

$$g_1 = 1 - \frac{L}{R}, \quad g_2 = 1 - \frac{L}{R_2}$$

1st and 3rd quadrants:

Positive branch:

 $0 < g_1 g_2 < 1$ stable $g_1 g_2 > 1$ unstable For unstable resonator: No focal point inside resonator

2nd and 4th quadrants:

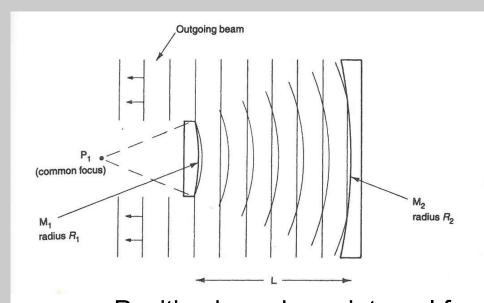
Negative branch: g₁ g₂ < 0
One center of curvature
inside resonator

For unstable resonator: focal
point inside resonator

Unstable resonators

Unstable resonators often use beam magnification to output couple past a mirror. Diffraction losses are the means of output coupling.

Gain must be sufficient to overcome diffractive losses.

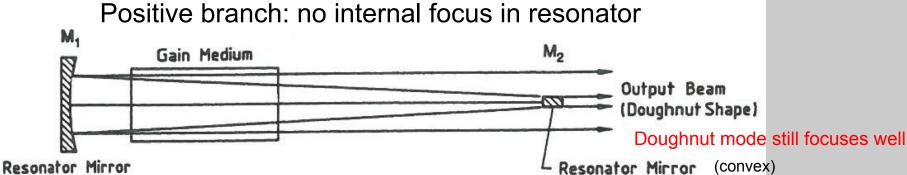


Telescope magnification:

$$M = \frac{f_2}{f_1} = \frac{R_2}{R_1}$$

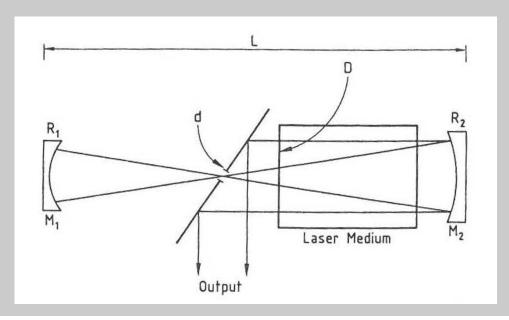
Output coupling loss per

round trip: $\frac{A_2}{A_1} = M^2 = \left(\frac{R_2}{R_1}\right)^2$



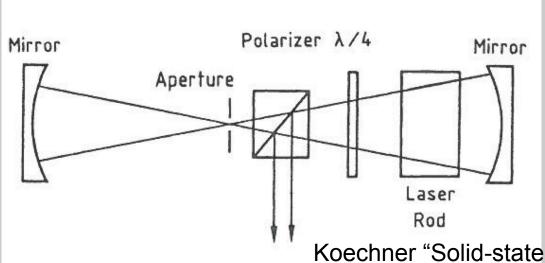
Koechner "Solid-state laser engineering"

Negative branch unstable resonators



Aperture at intermediate focus
- Acts as an internal spatial filter

"scraper mirror" output



Polarization-coupled output

Koechner "Solid-state laser engineering"

Self-filtering unstable resonator

Gobbi, Opt Commun 52, 195 (1984)

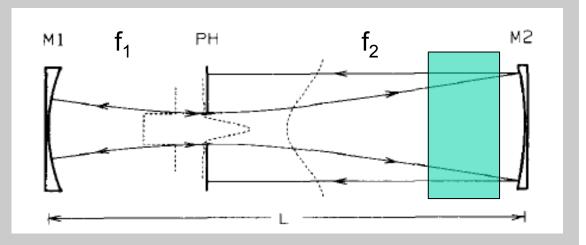
Confocal resonator with magnification

sequence:

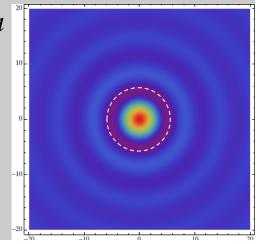
- 1. Collimated beam from M2 toward PH
- 2. PH clips beam, reduces energy by ratio f2/f1
- 3. Airy diffraction pattern imaged to PH by M1

$$E(r) \propto J_1 \left(\frac{ka}{f_1}r\right) / \frac{ka}{f_1}r$$
 first zero at $r = 1.22 f_1 \lambda / 2a$

- PH radius at first zero: passes 84% of power
- 5. M2 recollimates beam



For M=3, round trip transmission ~ 30% Use with high gain



Generalized ABCD

- Examples:
 - Variable output coupling mirrors
 - Radially-dependent gain
 - Parabolic refractive index profiles
 - Parabolic gain profiles gain guiding
- ABCD with gain and loss lead to complex terms
 - Qualitative change to stability
 - Need additional modeling to calculate net gain and loss (ABCD is for beam shape, not amplitude)

Variable reflectivity mirror

- Gaussian mirror: graded reflectivity dielectric coating
 - Beam curvature unaffected
 - Beam size is reduced:

$$e^{-r^2/w_2^2} = e^{-r^2/w_1^2} e^{-r^2/w_m^2} \qquad \frac{1}{q_2} = \frac{1}{R} - i\frac{\lambda}{\pi} \left(\frac{1}{w_1^2} + \frac{1}{w_m^2} \right) = \frac{1}{q_1} - i\frac{\lambda}{\pi w_m^2}$$

Compare to gaussian beam ABCD

$$q_2^{-1} = \frac{C + Dq_1^{-1}}{A + Bq_1^{-1}}$$
 $A = 1, B = 0$
 $C = -i\frac{\lambda}{\pi w_m^2}, D = 1$

Gaussian mirror lens
$$\begin{pmatrix} 1 & 0 \\ -i\frac{\lambda}{\pi w_m^2} & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix}$$

Acts like a lens with imaginary focal length!

Spatial gain narrowing

- Assume longitudinal pumping with Gaussian beam
- Even though gain adds to pulse energy, effect is similar to the Gaussian mirror

$$e^{-r^2/w_2^2} = e^{-r^2/w_1^2} \exp\left[-\frac{\Gamma_{stor}}{\Gamma_{sat}} \exp\left[-2r^2/w_g^2\right]\right]$$
$$\approx G_0 e^{-r^2/w_1^2} \exp\left[-2r^2/w_g^2\right]$$

G0 is peak gain on axis Expand exp[] in exponent, keeping parabolic term

$$\left(\begin{array}{cc}
1 & 0 \\
-i\frac{2\lambda}{\pi w_g^2} & 1
\end{array}\right)$$

ABCD only keeps track of beam width and radius of curvature – not loss or gain

Both versions enforce "stability" Need to be careful about results of trace.

Gradient index profiles

- Laser rod has extended interaction with beam
 - Thermal lensing and gain affect beam propagation
- Ideal lens changes wavefront curvature

$$E_{out}(r) = E_{in}(r)e^{-ikr^2/2f}$$

 Can accomplish the same effect with a gradient index medium, e.g.

 $n(r) = n_0 \left(1 - \frac{k_2}{2k}r^2\right)$ k₂ is a constant to

control curvature

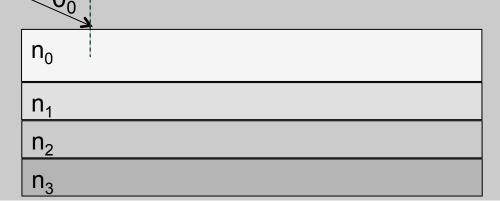
– For a thin medium:

$$E_{out}(r) = E_{in}(r)e^{ikn_0\left(1 - \frac{k_2}{2k}r^2\right)L} = E_{in}(r)e^{ikn_0L}e^{-ikL\frac{n_0k_2}{2k}r^2}$$

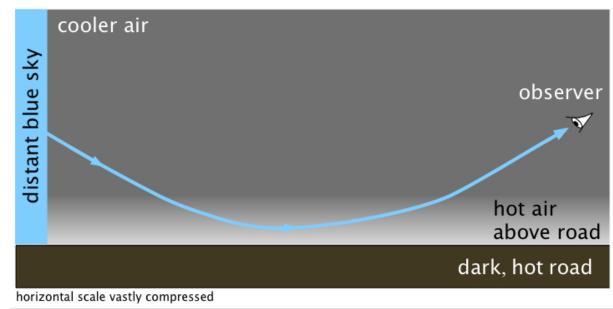
$$f = \frac{k}{n_0 k_2 L}$$
 GRIN lens: diffuse ions into lens material Thermal profiles: n[T(r)]

The mirage effect

Model index gradient as a sequence of layers

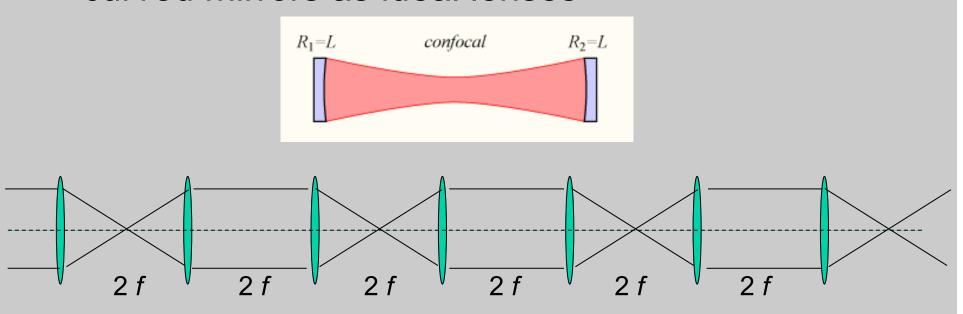


Find condition for turning point



Periodic lens model

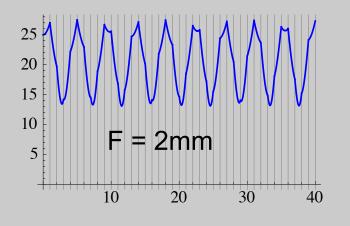
 A resonator can be "unfolded" by modeling the curved mirrors as ideal lenses

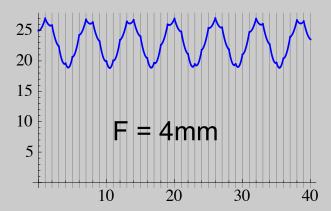


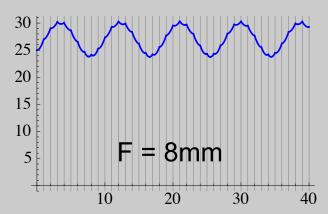
- Are there rays that will stay confined?
- If so, resonator is *stable*.

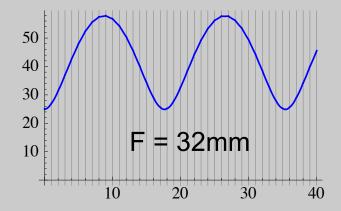
The lens waveguide

A sequence of positive lenses can act as a waveguide









Weaker lens: Smoother profile

Ray equation for parabolic gradient

- Parabolic index gradient: $n(r) = n_0 \left(1 \frac{k_2}{2k} r^2 \right)$
- Ray equation: $\frac{d^2r}{dz^2} + \frac{k_2}{k}r = 0$
- height and angle oscillate: compare to SHO

Solution, including initial conditions

$$r(z) = \cos(k_{osc}z)r_0 + \frac{1}{k_{osc}}\sin(k_{osc}z)r_0'$$

$$r'(z) = -k_{osc}\sin(k_{osc}z)r_0 + \cos(k_{osc}z)r_0'$$

$$k_{osc} = \sqrt{k_2 / k}$$

Note that the period of oscillation is $Z_{osc} = 2\pi \sqrt{k/k_2}$ Can put this into ABCD form:

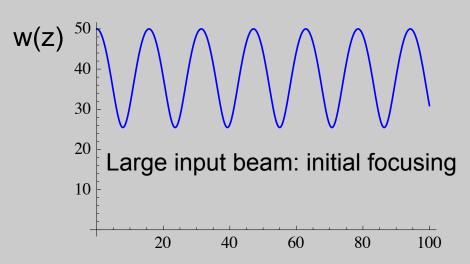
$$\begin{pmatrix} r(z) \\ r'(z) \end{pmatrix} = \begin{pmatrix} \cos(k_{osc}z) & \frac{1}{k_{osc}} \sin(k_{osc}z) \\ -k_{osc} \sin(k_{osc}z) & \cos(k_{osc}z) \end{pmatrix} \begin{pmatrix} r_0 \\ r'_0 \end{pmatrix}$$

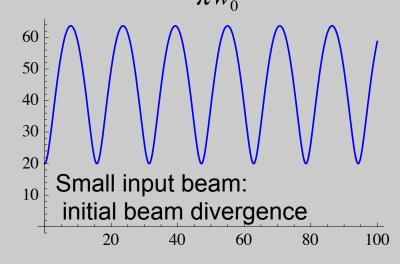
Gaussian beam solution

- Can use exact same ABCD matrix
 - Apply Gaussian ABCD rule:

$$q_{1} = \frac{Aq_{0} + B}{Cq_{0} + D} \qquad q(z) = \frac{q_{0}\cos(k_{osc}z) + \frac{1}{k_{osc}}\sin(k_{osc}z)}{-q_{0}k_{osc}\sin(k_{osc}z) + \cos(k_{osc}z)}$$

– Example: input beam waist, $w_0 = -i \frac{\lambda}{\pi w_0^2}$





Gradient index waveguide

- Optical fibers: can be made with a gradient index
 - Is there a stable mode size?

$$q(z) = \frac{q_0 \cos(k_{osc}z) + \frac{1}{k_{osc}} \sin(k_{osc}z)}{-q_0 k_{osc} \sin(k_{osc}z) + \cos(k_{osc}z)} = q_0$$

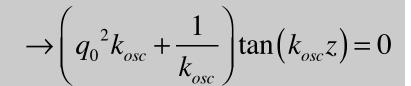
– Solve for guided mode:

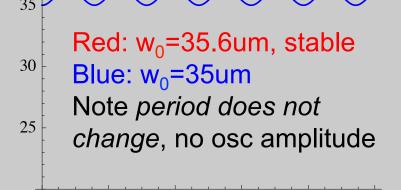
$$q_0 + \frac{1}{k_{osc}} \tan(k_{osc}z) = -q_0^2 k_{osc} \tan(k_{osc}z) + q_0$$

For
$$\left(q_0^2 k_{osc} + \frac{1}{k_{osc}}\right) = 0$$

then no z-dependence

$$q_0^2 = -k_{osc}^2 \rightarrow z_R = 1/k_{osc} = \sqrt{k/k_2}$$





60

80

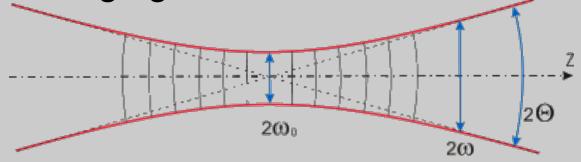
100

40

20

Guiding condition: wave perspective

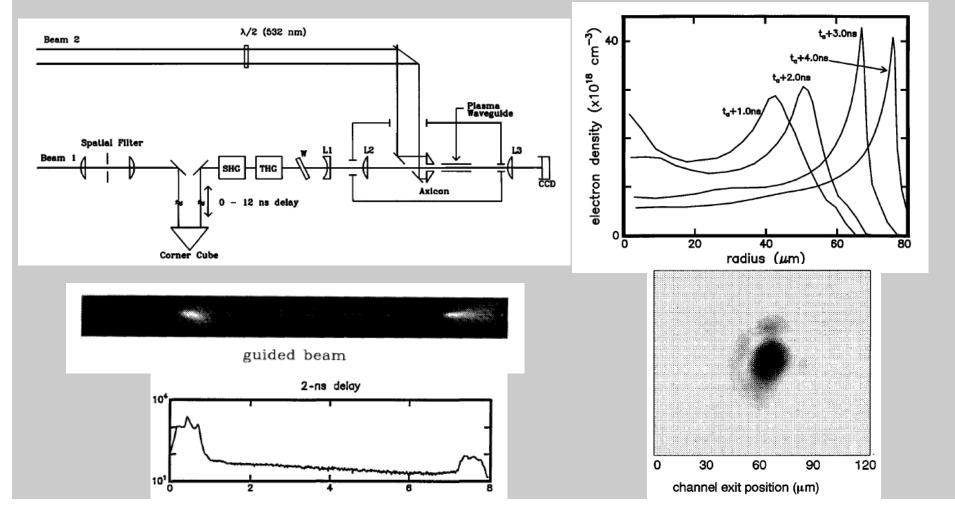
 w/o guiding, the beam will naturally develop diverging wavefront curvature



- Parabolic waveguide pulls central wavefront back, inducing focusing wavefront curvature
- If focusing balances diffraction: stable mode

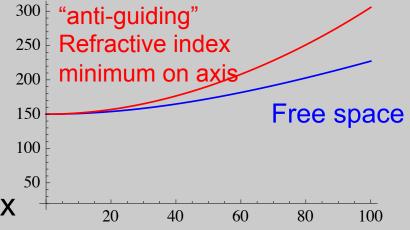
Example: plasma waveguide for intense pulses

 Line focus in gas, ionization, radial expansion w/ shock wave



Generalizations for gradient index ABCD

- If k₂ < 0, refractive index parabola is inverted:
 - cos[] to cosh[]
 - Beam defocuses
- Gain guiding:
 - Gain and loss are represented as complex index



$$n(r) = n_0 \left(1 - i \frac{\alpha_2}{2k} r^2 \right)$$
 For e^{-ikz} convention, gain for $\alpha_2 < 0$

- Diffractive loss is compensated by gain along axis
- Guided mode has convex wavefronts
- Gain guiding leads to a breaking of rule: wavefront will not generally match end mirrors!