Linear dielectric response and
second harmonic generation

Maxwell's Equations to the wave equation

* The induced polarization, P, contains the effect of the
medium:

_ _ oB
V-E=0 VXE= N Define the displacement vector
D D=¢E+P

vBZO vXB:‘UOE

» Derive the wave equation:
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Using: V-E=0
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Maxwell's Equations to the wave equation

* Finish derivation of the wave equation

?x(?xE):—VzEz—%(ﬁxB)
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“Inhomogeneous

2
VE- 2 o =4, FYE Wave Equation”

* For a plane wave traveling in the z-direction,
OE_10°E _ 0P
dz> ¢ o

Other geometries dictate how to
:uo atz deal with the Laplacian operator

Linear WE, isotropic medium

* For linear response, the induced polarization is
proportional to the incident field

— If the medium is isotropic, then the susceptibility is a scalar
P(E)=¢xE, D=¢gE+P=¢ (l+y)E=¢eE=¢nE

— Inthis case, P||E, DJE

O°E 1 9°E JO’P OE 1 0°E
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Using the fact that:
_ 2
gu,=1/c

I’E_n’ O’E
dz> ¢ o
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Linear WE, anisotropic medium

* |f the medium is anisotropic, the magnitude of the
induced polarization is still proportional to the
incident field

— But now the susceptibility is a tensor

P(E)=¢,7E, D=gE+P=¢ (1+}) E=¢éE

— In this case, the medium re-orients the direction of the
displacement vector

— If the coordinate system is chosen to diagonalize the
dielectric tensor,

e, 0 0 X 0 0
E=| 0 ¢, 0 x=| 0 x, O
0 0 e, 0 0 yx

Calculation of x!)(w)

* The polarization is just the density of individual
dipole moments:P=N_p=-N_ er=N,0E - solarizability
e In1D: P= Nap = —Na ex Where x(t) is the position of the electron
* Method:
— Assume one resonant frequency, w, for the system
— Assume one arbitrary input (driving) frequency, w
— Solve equation of motion for x(t):
m,i(t)=—eE(t)—m,w;x(t)—2m,yx(t)
— Calculate x®):
N, ex(t)

P =—N — (1)E 1 _
(0)=-N,exlt)=e 5(0) > 1 =~
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Solution for x(t)

* Equation of motion for x(t):
m i (t)+2m,yx(t)+m,w;x(t)=—eE(t)=—eEe® +c.c.
— Let

—iwt

x(1)=x,e7" +c.c.

—iwt —iwt

2 —iot . 2
-m,m x,e " =2iomyxe " +m,w,x,e

— Collect terms with common time dependence into their
own equation. This leads to separate (but identical)
equations for exp(i w t) dependence:

2 . 2.
-m,m°x, —2i®m,yx, + m,m,x, =—ek,
e 1

e 1 “Resonant
02 . 2
m, ,-2i0y—-0 m,

EO D(a)) denominator”

=
5

Il

I
ty

Il

+c.c.=—eE,e” +c.c.

Solution for x!!(w) and n(w)
o _ N, ex(t)
& E()

w__Neel_ e, e 1 N 1
x & \ m, ' D(w))Ee™ ¢em, D(w)

* Since X

e And

Ne 1 N e’ 1

+ =1+ — >
g,m, D(o) g,m, 0 —2i0Y —®

* This assumes low density (e.g. gas). For solids/liquids, correct for
local fields.

* Note that the index is complex: imaginary part leads to absorption
(or possibly gain)

n’=1+x"=1
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Complex refractive index

* Solve for real and imaginary parts
N e (w; —®*) . N eyo
2 2N\2 2.,2 +1 2 252 2,,2
2em (0 —@0° ) +07y"]  2em[(w,—0°) +07y]
* Near the resonance,

n—n +in, =1+

2 2
n +in =1+ N (w,—w) : Ny

+i
de,mw (@, —w) +(y/12)’]  8gm,w,[(w,—®)* +(y/2)’]

Normalized plot of n-1 and k versus w-w,

For more than gne resonance,
N e /i
n2 — 1+ a 2 > 2/ '
€M, T () — 0" —iwy )

o4 20248 Zf] =Z  f=oscillator strength

Second harmonic generation

* Applications: frequency conversion IR to visible,
visible to UV

— External conversion
— Intracavity conversion

* Nonlinear pulse characterization
(autocorrelation)

* SHG requires asymmetric potential
— Contrast mechanism in microscopy

— Diagnostic of symmetry breaking in nanoparticles and
molecules

— Diagnostic of surface properties
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Laser frequency conversion

Typsa Il third-haemani
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* Intracavity doubling
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Application: Pulse characterization

éStage of Arm #l

Stage of Arm#2
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Application: SHG microscopy

Red: CARS, coherent anti-stokes raman scattering
Green: SHG

Classical model for nonlinear response

* Extension of classical SHO model for dispersion

— NL contribution to restoring force (derived from an
anharmonic potential)

— As before, we include resonant frequency,
damping, driving oscillating field(s)

* Use a perturbative approach to solve for

electron position, x(t)= lx(l)(t)+/12x(2)(t)+/l3x(S)(t)+-~-

— Match orders of expansion parameter A
— Calculate orders of induced polarization.

* Can also numerically solve for response w/o
approximation
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Nonlinear wave equation

* Generalize for NL polarization

1 O°E o°P
VE-—2—=y 2
¢’ ot Ho or’

— For now, neglect vector character of response
— Expand polarization as a Taylor series
* Any 1/n! factors are included in definition of ¥’s

P=¢, ()(“’E+ xPE + yPE +-- )
— Separate linear from NL part: P=¢,x""E+P"
— Now PNL is the source term to the linear egn

n2 aZE aZPNL

2o M or

Signal channels

* We've seen that the nonlinear polarization can have
many frequency components (w,) and wave
directions (k)

* Total field is sum of all components:

E(r.t)=YE,(rt)=Y Eu(rt)cos[k, r-ot] Realfield

n>0 n>0

= Z[An (r,t)exp(i(kn -r—wnt))+c.c.}
n>0
— In general, there can be different k’s at the same
frequency w, (e.g. diffraction from NL grating)

— With this convention, field envelopes are |A =1Z,

n




1/17/17

Intensity calculation

* Time average intensity can be calculated from the field:

2

_1 Fl -1 T T
In_zeonc‘fn —zeoncfn F.

e With the convention that |A

Il
N =
e

2 *
In=2£0nc|An| =2¢ ncA -A
* Now we can write the field over a sum of + frequencies

E(r,t) = ;[An (r,t)exp(i(k" r— a)nt))+c.c.}

Generalized NL polarization

P(r,t) = ZHI[P" (r,t)exp(i(kn -r—wnt))+ c.c.}

* NL polarization does not necessarily point in the
same direction as E field: must use tensors

» Second-order example: cartesion {i,jk}e{1,2,3}
Pz( n + wm) = 802 z lz(fl)c (wn t wm;wn’wm)Ej (a)n)Ek ((Dm)
Jk (nm)
— Output i'th polarization direction, frequency w, +w,,
— Input polarization directions j, k, frequenies w_, w,,
— Sum (n m) so that w +w,, is constant
— Sum over + and — frequencies!
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2"d order NL polarization example

* The susceptibility is a tensor P is in a different
direction from E, each component of x;;, @ is a
function

* Consider sum mixing to produce w;=w,+w, along the
x-direction. The x component of the NL polarization

IS

7(1(% (w33w1»wz)Ej (a)l)Ek (w2)+

})1(0)3):802 (2)

Jk lek(a’33wz=a)1)Ej(wz)Ek(wl)

— Permuting input frequencies
— For a given set of input, output freq, x, ;% is a 3x3 matrix

2"d order NL polarization example
* All this looks hopelessly complicated, but typically...

— We specify input frequencies and polarization
— Phase matching allows us to focus on one output combination
— Away from resonances, x components indep of w
* Examples: input E (w;) and E,(w,)
_ () @)
Pl (603) =&, [ZIZIEZ (wl )El (w2)+ anEl (wz)Ez (wl ):I
* Input along y-direction E (w,) and E (w,)
2
R (0)3) = 2'5‘0%1(2;E2 (wl )Ez (wz)
* Because of crystal symmetry, many tensor components
are either 0 or identical to others

* Negative frequency components go with conjugated
fields

10



