Linear dielectric response and second harmonic generation

Maxwell's Equations to the wave equation

- The induced polarization, \mathbf{P}, contains the effect of the medium:
$\vec{\nabla} \cdot \mathbf{E}=0 \quad \vec{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \quad$ Define the displacement vector

$$
\vec{\nabla} \cdot \mathbf{B}=0 \quad \vec{\nabla} \times \mathbf{B}=\mu_{0} \frac{\partial \mathbf{D}}{\partial t}
$$

$$
\mathbf{D}=\varepsilon_{0} \mathbf{E}+\mathbf{P}
$$

- Derive the wave equation:

$$
\begin{gathered}
\rightarrow \vec{\nabla} \times \mathbf{B}=\mu_{0} \frac{\partial \mathbf{D}}{\partial t}=\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \frac{\partial \mathbf{P}}{\partial t} \\
\vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=-\vec{\nabla} \times \frac{\partial \mathbf{B}}{\partial t}=-\frac{\partial}{\partial t}(\vec{\nabla} \times \mathbf{B}) \\
\vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=\vec{\nabla}(\vec{\nabla} \cdot \mathbf{E})-\nabla^{2} \mathbf{E}=-\nabla^{2} \mathbf{E} \\
\text { Using: } \vec{\nabla} \cdot \mathbf{E}=0
\end{gathered}
$$

Maxwell's Equations to the wave equation

- Finish derivation of the wave equation

$$
\begin{aligned}
& \vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=-\nabla^{2} \mathbf{E}=-\frac{\partial}{\partial t}(\vec{\nabla} \times \mathbf{B}) \\
& -\frac{\partial}{\partial t}(\vec{\nabla} \times \mathbf{B})=-\frac{\partial}{\partial t}\left(\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \frac{\partial \mathbf{P}}{\partial t}\right)=-\left(\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}+\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}}\right) \\
& \nabla^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}} \text { "Inhomogeneous } \\
& \text { Wave Equation" }
\end{aligned}
$$

- For a plane wave traveling in the z-direction,

$$
\frac{\partial^{2} \mathbf{E}}{\partial z^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}}
$$

Linear WE, isotropic medium

- For linear response, the induced polarization is proportional to the incident field
- If the medium is isotropic, then the susceptibility is a scalar
$\mathbf{P}(\mathbf{E})=\varepsilon_{0} \chi \mathbf{E}, \quad \mathbf{D}=\varepsilon_{0} \mathbf{E}+\mathbf{P}=\varepsilon_{0}(1+\chi) \mathbf{E}=\varepsilon_{0} \varepsilon \mathbf{E}=\varepsilon_{0} n^{2} \mathbf{E}$
- In this case, $\mathbf{P}\|\mathbf{E}, \quad \mathbf{D}\| \mathbf{E}$
$\frac{\partial^{2} \mathbf{E}}{\partial z^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}}=\mu_{0} \varepsilon_{0} \chi \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\frac{1}{c^{2}} \chi \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}$

$$
\frac{\partial^{2} \mathbf{E}}{\partial z^{2}}-\frac{n^{2}}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0
$$

Using the fact that

$$
\varepsilon_{0} \mu_{0}=1 / c^{2}
$$

Linear WE, anisotropic medium

- If the medium is anisotropic, the magnitude of the induced polarization is still proportional to the incident field
- But now the susceptibility is a tensor

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0} \ddot{\chi} \cdot \mathbf{E}, \quad \mathbf{D}=\varepsilon_{0} \mathbf{E}+\mathbf{P}=\varepsilon_{0}(1+\ddot{\chi}) \cdot \mathbf{E}=\varepsilon_{0} \vec{\varepsilon} \cdot \mathbf{E}
$$

- In this case, the medium re-orients the direction of the displacement vector
- If the coordinate system is chosen to diagonalize the dielectric tensor,

$$
\bar{\varepsilon}=\left(\begin{array}{ccc}
\varepsilon_{x x} & 0 & 0 \\
0 & \varepsilon_{y y} & 0 \\
0 & 0 & \varepsilon_{z z}
\end{array}\right) \quad \ddot{\chi}=\left(\begin{array}{ccc}
\chi_{z x} & 0 & 0 \\
0 & \chi_{y y} & 0 \\
0 & 0 & \chi_{z z}
\end{array}\right)
$$

Calculation of $\chi^{(1)}(\omega)$

- The polarization is just the density of individual dipole moments: $\mathbf{P}=N_{a} \mathbf{p}=-N_{a} e \mathbf{r}=N_{a} \alpha \mathbf{E} \quad \alpha=$ polarizability
- In 1D: $P=N_{a} p=-N_{a}$ ex Where $x(t)$ is the position of the electron
- Method:
- Assume one resonant frequency, ω_{0} for the system
- Assume one arbitrary input (driving) frequency, ω
- Solve equation of motion for $\mathrm{x}(\mathrm{t})$:

$$
m_{e} \ddot{\ddot{x}}(t)=-e E(t)-m_{e} \omega_{0}^{2} x(t)-2 m_{e} \gamma \dot{x}(t)
$$

- Calculate $\chi^{(1)}$:

$$
P(t)=-N_{a} e x(t)=\varepsilon_{0} \chi^{(1)} E(t) \rightarrow \chi^{(1)}=-\frac{N_{a} e x(t)}{\varepsilon_{0} E(t)}
$$

Solution for $\mathbf{x}(\mathrm{t})$

- Equation of motion for $\mathrm{x}(\mathrm{t})$:
$m_{e} \ddot{x}(t)+2 m_{e} \gamma \dot{x}(t)+m_{e} \omega_{0}^{2} x(t)=-e E(t)=-e E_{0} e^{-i \omega t}+c . c$.
- Let $x(t)=x_{0} e^{-i \omega t}+c . c$.
$-m_{e} \omega^{2} x_{0} e^{-i \omega t}-2 i \omega m_{e} \gamma x_{0} e^{-i \omega t}+m_{e} \omega_{0}^{2} x_{0} e^{-i \omega t}+c . c .=-e E_{0} e^{-i \omega t}+c . c$.
- Collect terms with common time dependence into their own equation. This leads to separate (but identical) equations for $\exp (\pm i \omega t)$ dependence:
$-m_{e} \omega^{2} x_{0}-2 i \omega m_{e} \gamma x_{0}+m_{e} \omega_{0}^{2} x_{0}=-e E_{0}$
$x_{0}(\omega)=-\frac{e}{m_{e}} E_{0} \frac{1}{\omega_{0}^{2}-2 i \omega \gamma-\omega^{2}} \equiv-\frac{e}{m_{e}} E_{0} \frac{1}{D(\omega)} \quad \begin{aligned} & \text { "Resonant } \\ & \text { denominator" }\end{aligned}$

Solution for $\chi^{(1)}(\omega)$ and $n(\omega)$

- Since $\chi^{(1)}=-\frac{N_{a} e x(t)}{\varepsilon_{0} E(t)}$

$$
\chi^{(1)}=-\frac{N_{a} e}{\varepsilon_{0}}\left(-\frac{e}{m_{e}} E_{0} \frac{e^{-i \omega t}}{D(\omega)}\right) \frac{1}{E_{0} e^{-i \omega t}}=\frac{N_{a} e^{2}}{\varepsilon_{0} m_{e}} \frac{1}{D(\omega)}
$$

- And
$n^{2}=1+\chi^{(1)}=1+\frac{N_{a} e^{2}}{\varepsilon_{0} m_{e}} \frac{1}{D(\omega)}=1+\frac{N_{a} e^{2}}{\varepsilon_{0} m_{e}} \frac{1}{\omega_{0}^{2}-2 i \omega \gamma-\omega^{2}}$
- This assumes low density (e.g. gas). For solids/liquids, correct for local fields.
- Note that the index is complex: imaginary part leads to absorption (or possibly gain)

Complex refractive index

- Solve for real and imaginary parts

$$
n \rightarrow n_{r}+i n_{i}=1+\frac{N_{a} e^{2}\left(\omega_{0}^{2}-\omega^{2}\right)}{2 \varepsilon_{0} m_{e}\left[\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\omega^{2} \gamma^{2}\right]}+i \frac{N_{a} e^{2} \gamma \omega}{2 \varepsilon_{0} m_{e}\left[\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\omega^{2} \gamma^{2}\right]}
$$

- Near the resonance,
$n_{r}+i n_{i}=1+\frac{N_{a} e^{2}\left(\omega_{0}-\omega\right)}{4 \varepsilon_{0} m_{e} \omega_{0}\left[\left(\omega_{0}-\omega\right)^{2}+(\gamma / 2)^{2}\right]}+i \frac{N_{a} e^{2} \gamma}{8 \varepsilon_{0} m_{e} \omega_{0}\left[\left(\omega_{0}-\omega\right)^{2}+(\gamma / 2)^{2}\right]}$

Normalized plot of $n-1$ and k versus $w-w_{0}$

For more than one resonance,
$n^{2}=1+\frac{N_{a} e^{2}}{\varepsilon_{0} m_{e}} \sum_{j} \frac{f_{j}}{\left(\omega_{j}^{2}-\omega^{2}-i \omega \gamma_{j}\right)}$
$\sum_{i} f_{j}=Z \quad \mathrm{f}=$ oscillator strength

Second harmonic generation

- Applications: frequency conversion IR to visible, visible to UV
- External conversion
- Intracavity conversion
- Nonlinear pulse characterization (autocorrelation)
- SHG requires asymmetric potential
- Contrast mechanism in microscopy
- Diagnostic of symmetry breaking in nanoparticles and molecules
- Diagnostic of surface properties

Laser frequency conversion

- External cavity
- Intracavity doubling

Application: Pulse characterization

Application: SHG microscopy

Red: CARS, coherent anti-stokes raman scattering Green: SHG

Classical model for nonlinear response

- Extension of classical SHO model for dispersion
- NL contribution to restoring force (derived from an anharmonic potential)
- As before, we include resonant frequency, damping, driving oscillating field(s)
- Use a perturbative approach to solve for electron position, $x(t)=\lambda x^{(1)}(t)+\lambda^{2} x^{(2)}(t)+\lambda^{3} x^{(3)}(t)+\cdots$
- Match orders of expansion parameter λ
- Calculate orders of induced polarization.
- Can also numerically solve for response w/o approximation

Nonlinear wave equation

- Generalize for NL polarization
$\nabla^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}}$
- For now, neglect vector character of response
- Expand polarization as a Taylor series
- Any $1 / n$! factors are included in definition of χ 's
$P=\varepsilon_{0}\left(\chi^{(1)} E+\chi^{(2)} E^{2}+\chi^{(3)} E^{3}+\cdots\right)$
- Separate linear from NL part: $\quad P=\varepsilon_{0} \chi^{(1)} E+P^{N L}$
- Now PNL is the source term to the linear eqn
$\nabla^{2} E-\frac{n^{2}}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} P^{N L}}{\partial t^{2}}$

Signal channels

- We've seen that the nonlinear polarization can have many frequency components (ω_{n}) and wave directions (\mathbf{k}_{n})
- Total field is sum of all components:

$$
\begin{aligned}
\mathbf{E}(\mathbf{r}, t) & =\sum_{n>0} \mathbf{E}_{n}(\mathbf{r}, t)=\sum_{n>0} \overrightarrow{\mathcal{E}}_{n}(\mathbf{r}, t) \cos \left[\mathbf{k}_{n} \cdot \mathbf{r}-\omega_{n} t\right] \quad \text { Real field } \\
& =\sum_{n>0}\left[\mathbf{A}_{n}(r, t) \exp \left(i\left(\mathbf{k}_{n} \cdot \mathbf{r}-\omega_{n} t\right)\right)+\text { c.c. }\right]
\end{aligned}
$$

- In general, there can be different k's at the same frequency ω_{n} (e.g. diffraction from NL grating)
- With this convention, field envelopes are $\mathbf{A}_{n}=\frac{1}{2} \overrightarrow{\mathcal{E}}_{n}$

Intensity calculation

- Time average intensity can be calculated from the field:
$I_{n}=\frac{1}{2} \varepsilon_{0} n c\left|\overrightarrow{\mathcal{E}}_{n}\right|^{2}=\frac{1}{2} \varepsilon_{0} n c \overrightarrow{\mathcal{E}}_{n} \cdot \overrightarrow{\mathcal{E}}_{n}{ }^{*}$
- With the convention that $\mathbf{A}_{n}=\frac{1}{2} \overrightarrow{\mathcal{E}}_{n}$
$I_{n}=2 \varepsilon_{0} n c\left|\mathbf{A}_{n}\right|^{2}=2 \varepsilon_{0} n c \mathbf{A}_{n} \cdot \mathbf{A}_{n}{ }^{*}$
- Now we can write the field over a sum of \pm frequencies $\mathbf{E}(\mathbf{r}, t)=\sum_{n}\left[\mathbf{A}_{n}(r, t) \exp \left(i\left(\mathbf{k}_{n} \cdot \mathbf{r}-\omega_{n} t\right)\right)+c . c.\right]$

Generalized NL polarization

$\mathbf{P}(\mathbf{r}, t)=\sum_{n}\left[\mathbf{P}_{n}(r, t) \exp \left(i\left(\mathbf{k}_{n} \cdot \mathbf{r}-\omega_{n} t\right)\right)+c . c.\right]$

- NL polarization does not necessarily point in the same direction as E field: must use tensors
- Second-order example: cartesion $\{i, j, k\} \in\{1,2,3\}$ $P_{i}\left(\omega_{n}+\omega_{m}\right)=\varepsilon_{0} \sum_{j k} \sum_{(n m)} \chi_{i j k}^{(2)}\left(\omega_{n}+\omega_{m} ; \omega_{n}, \omega_{m}\right) E_{j}\left(\omega_{n}\right) E_{k}\left(\omega_{m}\right)$
- Output i'th polarization direction, frequency $\omega_{n}+\omega_{m}$
- Input polarization directions j, k, frequenies ω_{n}, ω_{m}
- Sum ($n \mathrm{~m}$) so that $\omega_{\mathrm{n}}+\omega_{\mathrm{m}}$ is constant
- Sum over + and - frequencies!

$\mathbf{2}^{\text {nd }}$ order NL polarization example

- The susceptibility is a tensor \mathbf{P} is in a different direction from E, each component of $\chi_{i j k}{ }^{(2)}$ is a function
- Consider sum mixing to produce $\omega_{3}=\omega_{1}+\omega_{2}$ along the x-direction. The x component of the NL polarization is

$$
P_{1}\left(\omega_{3}\right)=\varepsilon_{0} \sum_{j k}\left[\begin{array}{l}
\chi_{1 j k}^{(2)}\left(\omega_{3} ; \omega_{1}, \omega_{2}\right) E_{j}\left(\omega_{1}\right) E_{k}\left(\omega_{2}\right)+ \\
\chi_{1 j k}^{(2)}\left(\omega_{3} ; \omega_{2}, \omega_{1}\right) E_{j}\left(\omega_{2}\right) E_{k}\left(\omega_{1}\right)
\end{array}\right]
$$

- Permuting input frequencies
- For a given set of input, output freq, $\chi_{1 j k}{ }^{(2)}$ is a 3×3 matrix

$2^{\text {nd }}$ order NL polarization example

- All this looks hopelessly complicated, but typically...
- We specify input frequencies and polarization
- Phase matching allows us to focus on one output combination
- Away from resonances, χ components indep of ω
- Examples: input $\mathrm{E}_{\mathrm{y}}\left(\omega_{1}\right)$ and $\mathrm{E}_{\mathrm{x}}\left(\omega_{2}\right)$

$$
P_{1}\left(\omega_{3}\right)=\varepsilon_{0}\left[\chi_{121}^{(2)} E_{2}\left(\omega_{1}\right) E_{1}\left(\omega_{2}\right)+\chi_{112}^{(2)} E_{1}\left(\omega_{2}\right) E_{2}\left(\omega_{1}\right)\right]
$$

- Input along y-direction $\mathrm{E}_{\mathrm{y}}\left(\omega_{1}\right)$ and $\mathrm{E}_{\mathrm{y}}\left(\omega_{2}\right)$

$$
P_{1}\left(\omega_{3}\right)=2 \varepsilon_{0} \chi_{122}^{(2)} E_{2}\left(\omega_{1}\right) E_{2}\left(\omega_{2}\right)
$$

- Because of crystal symmetry, many tensor components are either 0 or identical to others
- Negative frequency components go with conjugated fields

