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Linear	dielectric	response	and	
second	harmonic	genera5on	

Maxwell's	Equa-ons	to	the	wave	equa-on	

•  The induced polarization, P,  contains the effect of the 
medium:  

 
 

•  Derive the wave equation: 
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Define the displacement vector 

Using:		    

∇⋅E = 0
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Maxwell's	Equa-ons	to	the	wave	equa-on	

•  Finish	deriva5on	of	the	wave	equa5on	

•  For	a	plane	wave	traveling	in	the	z-direc5on,	
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“Inhomogeneous 
Wave Equation”

Other	geometries	dictate	how	to	
deal	with	the	Laplacian	operator	

Linear	WE,	isotropic	medium	
•  For	linear	response,	the	induced	polariza5on	is	
propor5onal	to	the	incident	field	
–  If	the	medium	is	isotropic,	then	the	suscep5bility	is	a	scalar	

–  In	this	case,		

   
∂2E
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   P E( ) = ε0χE, D = ε0E+ P = ε0 1+ χ( )E = ε0εE = ε0n
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   P E, D E

Using the fact that:

  ε0µ0 = 1/ c2
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•  If	the	medium	is	anisotropic,	the	magnitude	of	the	
induced	polariza5on	is	s5ll	propor5onal	to	the	
incident	field	
–  But	now	the	suscep5bility	is	a	tensor	

–  In	this	case,	the	medium	re-orients	the	direc5on	of	the	
displacement	vector	

–  If	the	coordinate	system	is	chosen	to	diagonalize	the	
dielectric	tensor,		

Linear	WE,	anisotropic	medium	

   P E( ) = ε0


χ ⋅E, D = ε0E+ P = ε0 1+
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⎟

Calcula-on	of	χ(1)(ω)	
•  The	polariza5on	is	just	the	density	of	individual	
dipole	moments:	

•  In	1D:	
•  Method:		

–  Assume	one	resonant	frequency,	ω0	for	the	system	
–  Assume	one	arbitrary	input	(driving)	frequency,	ω	
–  Solve	equa5on	of	mo5on	for	x(t):		

–  Calculate	χ(1):	

P = Nap = −Na er = NaαE
P = Na p = −Na ex

 mex t( ) = −eE t( )−meω 0
2x t( )− 2meγ x t( )

P t( ) = −Na ex t( ) = ε0χ
(1)E t( )→ χ (1) = −

Na ex t( )
ε0E t( )

Where	x(t)	is	the	posi5on	of	the	electron	

α	=	polarizability	
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Solu-on	for	x(t)	

•  Equa5on	of	mo5on	for	x(t):	

–  Let	

–  Collect	terms	with	common	5me	dependence	into	their	
own	equa5on.	This	leads	to	separate	(but	iden5cal)	
equa5ons	for	exp(±i	ω	t)	dependence:	

 mex t( ) + 2meγ x t( ) +meω 0
2x t( ) = −eE t( ) = −eE0e

− iω t + c.c.

x t( ) = x0e− iω t + c.c.
−meω

2x0e
− iω t − 2iω meγ x0e

− iω t +meω 0
2x0e

− iω t + c.c.= −eE0e
− iω t + c.c.

−meω
2x0 − 2iω meγ x0 +meω 0

2x0 = −eE0

x0 ω( ) = − e
me

E0
1

ω 0
2 − 2iωγ −ω 2 ≡ − e

me

E0
1

D ω( )
“Resonant	
denominator”	

•  Since	

•  And	

•  This	assumes	low	density	(e.g.	gas).	For	solids/liquids,	correct	for	
local	fields.		

•  Note	that	the	index	is	complex:	imaginary	part	leads	to	absorp5on	
(or	possibly	gain)	

Solu-on	for	χ(1)(ω)	and	n(ω)	

χ (1) = −
Na ex t( )
ε0E t( )

χ (1) = − Na e
ε0

− e
me

E0
e− iωt

D ω( )
⎛
⎝⎜

⎞
⎠⎟

1
E0e

− iωt =
Nae

2

ε0me

1
D ω( )

n2 = 1+ χ (1) = 1+ Nae
2

ε0me

1
D ω( ) = 1+

Nae
2

ε0me

1
ω 0

2 − 2iωγ −ω 2



1/17/17	

5	

•  Solve	for	real	and	imaginary	parts	

•  Near	the	resonance,	

n→ nr + ini = 1+
Nae

2 (ω 0
2 −ω 2 )

2ε0me[(ω 0
2 −ω 2 )2 +ω 2γ 2 ]

+ i Nae
2γω

2ε0me[(ω 0
2 −ω 2 )2 +ω 2γ 2 ]

Complex	refrac-ve	index	

nr + ini = 1+
Nae

2 (ω 0 −ω )
4ε0meω 0[(ω 0 −ω )

2 + (γ / 2)2 ]
+ i Nae

2γ
8ε0meω 0[(ω 0 −ω )

2 + (γ / 2)2 ]

-6 -4 -2 0 2 4 6

 

 

 

(ω-ω0)/γ

 nr
 ni

Normalized	plot	of	n-1	and	k	versus	w-w0

n2 = 1+ Nae
2

ε0me

f j
(ω j

2 −ω 2 − iωγ j )j
∑

For	more	than	one	resonance,	

Zf
j

j =∑ f	=	oscillator	strength	

Second	harmonic	genera-on	

•  Applica5ons:	frequency	conversion	IR	to	visible,	
visible	to	UV	
–  External	conversion	
–  Intracavity	conversion	

•  Nonlinear	pulse	characteriza5on	
(autocorrela5on)	

•  SHG	requires	asymmetric	poten5al	
–  Contrast	mechanism	in	microscopy	
– Diagnos5c	of	symmetry	breaking	in	nanopar5cles	and	
molecules	

– Diagnos5c	of	surface	proper5es	
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Laser	frequency	conversion	

•  External	cavity	

•  Intracavity	doubling	

Applica-on:	Pulse	characteriza-on	
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Applica5on:	SHG	microscopy	

Red:	CARS,	coherent	an5-stokes	raman	scagering	
Green:	SHG	

Classical	model	for	nonlinear	response	
•  Extension	of	classical	SHO	model	for	dispersion	

– NL	contribu5on	to	restoring	force	(derived	from	an	
anharmonic	poten5al)	

– As	before,	we	include	resonant	frequency,	
damping,	driving	oscilla5ng	field(s)	

•  Use	a	perturba5ve	approach	to	solve	for	
electron	posi5on,		
– Match	orders	of	expansion	parameter	λ	
– Calculate	orders	of	induced	polariza5on.		

•  Can	also	numerically	solve	for	response	w/o	
approxima5on	

		 x(t)= λ x
1( ) t( )+λ2 x 2( ) t( )+λ3 x 3( ) t( )+!
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Nonlinear	wave	equa-on	

•  Generalize	for	NL	polariza5on	

– For	now,	neglect	vector	character	of	response	
– Expand	polariza5on	as	a	Taylor	series	

•  Any	1/n!	factors	are	included	in	defini5on	of	χ’s		

– Separate	linear	from	NL	part:	
– Now	PNL	is	the	source	term	to	the	linear	eqn		

   
∇2E− 1

c2

∂2E
∂t2 = µ0

∂2 P
∂t2

   
P = ε0 χ (1)E + χ (2)E2 + χ (3)E3 +!( )

  P = ε0χ
(1)E + PNL

  
∇2E − n2

c2

∂2 E
∂t2 = µ0

∂2 PNL

∂t2

Signal	channels	

•  We’ve	seen	that	the	nonlinear	polariza5on	can	have	
many	frequency	components	(ωn)	and	wave	
direc5ons	(kn)	

•  Total	field	is	sum	of	all	components:	

–  In	general,	there	can	be	different	k’s	at	the	same	
frequency	ωn	(e.g.	diffrac5on	from	NL	gra5ng)	

– With	this	conven5on,	field	envelopes	are		

			  

E r,t( ) = En r,t( )
n>0
∑ = E

!"
n r,t( )cos kn ⋅r−ωnt⎡⎣ ⎤⎦

n>0
∑

= An r ,t( )exp i kn ⋅r−ωnt( )( )+ c.c.⎡
⎣

⎤
⎦

n>0
∑

Real	field	

			  An =
1
2E
!"

n
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•  Time	average	intensity	can	be	calculated	from	the	field:	

•  With	the	conven5on	that	

•  Now	we	can	write	the	field	over	a	sum	of	±	frequencies			

Intensity	calcula-on	

		  In =
1
2ε0ncE

!"
n

2
= 1

2ε0ncE
!"

n⋅E
!"!

n
*

			  An =
1
2E
!"

n

			In =2ε0nc An

2
=2ε0ncAn ⋅An

*

			
E r,t( ) = An r ,t( )exp i kn ⋅r−ωnt( )( )+ c.c.⎡

⎣
⎤
⎦

n
∑

•  NL	polariza5on	does	not	necessarily	point	in	the	
same	direc5on	as	E	field:	must	use	tensors	

•  Second-order	example:	cartesion			

–  Output	i’th	polariza5on	direc5on,	frequency	ωn+ωm	
–  Input	polariza5on	direc5ons	j,	k,	frequenies		ωn,	ωm	
–  Sum	(n	m)	so	that	ωn+ωm	is	constant	
–  Sum	over	+	and	–	frequencies!	

Generalized	NL	polariza-on	

			
P r,t( ) = Pn r ,t( )exp i kn ⋅r−ωnt( )( )+ c.c.⎡

⎣
⎤
⎦

n
∑

  
Pi ω n +ωm( ) = ε0 χ i j k

(2) ω n +ωm;ω n ,ωm( )E j ω n( )Ek ωm( )
(nm)
∑

j k
∑

		 i , j ,k{ }∈ 1,2,3{ }
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•  The	suscep5bility	is	a	tensor	P	is	in	a	different	
direc5on	from	E,	each	component	of	χi	j	k(2)	is	a	
func5on	

•  Consider	sum	mixing	to	produce	ω3=ω1+ω2	along	the	
x-direc5on.	The	x	component	of	the	NL	polariza5on	
is	

–  Permu5ng	input	frequencies			
–  For	a	given	set	of	input,	output	freq,	χ1	j	k(2)	is	a	3x3	matrix	

2nd	order	NL	polariza-on	example	

  
P1 ω3( ) = ε0

χ1 j k
(2) ω3;ω1,ω 2( )E j ω1( )Ek ω 2( ) +

χ1 j k
(2) ω3;ω 2 ,ω1( )E j ω 2( )Ek ω1( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥j k

∑

•  All	this	looks	hopelessly	complicated,	but	typically…	
–  We	specify	input	frequencies	and	polariza5on	
–  Phase	matching	allows	us	to	focus	on	one	output	combina5on	
–  Away	from	resonances,	χ	components	indep	of	ω	

•  Examples:	input	Ey(ω1)	and	Ex(ω2)	
	
•  Input	along	y-direc5on	Ey(ω1)	and	Ey(ω2)	

•  Because	of	crystal	symmetry,	many	tensor	components	
are	either	0	or	iden5cal	to	others	

•  Nega5ve	frequency	components	go	with	conjugated	
fields	

2nd	order	NL	polariza-on	example	

  P1 ω3( ) = ε0 χ121
(2)E2 ω1( )E1 ω 2( ) + χ112

(2)E1 ω 2( )E2 ω1( )⎡⎣ ⎤⎦

  P1 ω3( ) = 2ε0χ122
(2) E2 ω1( )E2 ω 2( )


