Problem 5.18

It doesn't matter. According to Theorem 2, in Sect. 1.6.2, $\int \mathbf{J} \cdot d\mathbf{a}$ is independent of surface, for any given boundary line, provided that J is divergenceless, which it is, for steady currents (Eq. 5.31).

Problem 5.25

(a) A points in the same direction as I, and is a function only of s (the distance from the wire). In cylindrical coordinates, then, $\mathbf{A} = A(s)\hat{\mathbf{z}}$, so $\mathbf{B} = \nabla \times \mathbf{A} = -\frac{\partial A}{\partial s}\hat{\phi} = \frac{\mu_0 I}{2\pi s}\hat{\phi}$ (the field of an infinite wire). Therefore $\frac{\partial A}{\partial s} = -\frac{\mu_0 I}{2\pi s}$, and $\mathbf{A}(\mathbf{r}) = -\frac{\mu_0 I}{2\pi} \ln(s/a) \hat{\mathbf{z}}$ (the constant a is arbitrary; you could use 1, but then the units

look fishy).
$$\nabla \cdot \mathbf{A} = \frac{\partial A_z}{\partial z} = 0$$
. $\sqrt{\nabla \times \mathbf{A}} = -\frac{\partial A_z}{\partial s} \hat{\phi} = \frac{\mu_0 I}{2\pi s} \hat{\phi} = \mathbf{B}$. $\sqrt{\mathbf{B}} \cdot \mathbf{A} = -\frac{\partial A_z}{\partial s} \hat{\phi} = \mathbf{B}$. $\sqrt{\mathbf{B}} \cdot \mathbf{A} = -\frac{\partial A_z}{\partial s} \hat{\phi} = \mathbf{B}$.

 $\mathbf{B} = \frac{\mu_0}{2\pi} \frac{Is}{R^2} \hat{\phi}. \quad \frac{\partial A}{\partial s} = -\frac{\mu_0 I}{2\pi} \frac{s}{R^2} \Rightarrow \mathbf{A} = -\frac{\mu_0 I}{4\pi R^2} (s^2 - b^2) \hat{\mathbf{z}}. \text{ Here } b \text{ is again arbitrary, except that since } \mathbf{A}$ must be continuous at R, $-\frac{\mu_0 I}{2\pi} \ln(R/a) = -\frac{\mu_0 I}{4\pi R^2} (R^2 - b^2)$, which means that we must pick a and b such that

$$2\pi \qquad 4\pi R^{2}$$

$$2\ln(R/b) = 1 - (b/R)^{2}. \text{ I'll use } a = b = R. \text{ Then } A = \begin{cases} -\frac{\mu_{0}I}{4\pi R^{2}}(s^{2} - R^{2})\hat{\mathbf{z}}, & \text{for } s \leq R; \\ -\frac{\mu_{0}I}{2\pi}\ln(s/R)\hat{\mathbf{z}}, & \text{for } s \geq R. \end{cases}$$

(a)
$$\nabla \cdot \mathbf{A} = \frac{\mu_0}{4\pi} \int \nabla \cdot \left(\frac{\mathbf{J}}{\imath}\right) d\tau'$$
. $\nabla \cdot \left(\frac{\mathbf{J}}{\imath}\right) = \frac{1}{\imath} (\nabla \cdot \mathbf{J}) + \mathbf{J} \cdot \nabla \left(\frac{1}{\imath}\right)$. But the first term is zero, because $\mathbf{J}(\mathbf{r}')$ a function of the source coordinates, not the field coordinates. And since $\imath = \mathbf{r} - \mathbf{r}'$, $\nabla \left(\frac{1}{\imath}\right) = -\nabla' \left(\frac{1}{\imath}\right)$. So

$$\nabla \cdot \left(\frac{\mathbf{J}}{\imath}\right) = -\mathbf{J} \cdot \nabla' \left(\frac{1}{\imath}\right). \text{ But } \nabla' \cdot \left(\frac{\mathbf{J}}{\imath}\right) = \frac{1}{\imath} (\nabla' \cdot \mathbf{J}) + \mathbf{J} \cdot \nabla' \left(\frac{1}{\imath}\right), \text{ and } \nabla' \cdot \mathbf{J} = 0 \text{ in magnetostatics (Eq. 5.31). So}$$

$$\nabla \cdot \left(\frac{\mathbf{J}}{\imath}\right) = -\nabla' \cdot \left(\frac{\mathbf{J}}{\imath}\right), \text{ and hence, by the divergence theorem, } \nabla \cdot \mathbf{A} = -\frac{\mu_0}{4\pi} \int \nabla' \cdot \left(\frac{\mathbf{J}}{\imath}\right) d\tau' = -\frac{\mu_0}{4\pi} \oint \frac{\mathbf{J}}{\imath} \cdot d\mathbf{a}',$$

where the integral is now over the surface surrounding all the currents. But J=0 on this surface, so $\nabla \cdot A=0$.

(b)
$$\nabla \times \mathbf{A} = \frac{\mu_0}{4\pi} \int \nabla \times \left(\frac{\mathbf{J}}{\imath}\right) d\tau' = \frac{\mu_0}{4\pi} \int \left[\frac{1}{\imath}(\nabla \times \mathbf{J}) - \mathbf{J} \times \nabla \left(\frac{1}{\imath}\right)\right] d\tau'$$
. But $\nabla \times \mathbf{J} = 0$ (since \mathbf{J} is not a function of \mathbf{r}), and $\nabla \left(\frac{1}{\imath}\right) = -\frac{\imath}{\imath^2}$ (Eq. 1.101), so $\nabla \times \mathbf{A} = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J} \times \hat{\imath}}{\imath^2} d\tau' = \mathbf{B}$.

(c) $\nabla^2 \mathbf{A} = \frac{\mu_0}{4\pi} \int \nabla^2 \left(\frac{\mathbf{J}}{a}\right) d\tau'$. But $\nabla^2 \left(\frac{\mathbf{J}}{a}\right) = \mathbf{J}\nabla^2 \left(\frac{1}{a}\right)$ (once again, \mathbf{J} is a *constant*, as far as differentiation) ation with respect to r is concerned), and $\nabla^2 \left(\frac{1}{4}\right) = -4\pi\delta^3$ (a) (Eq. 1.102).

So
$$\nabla^2 \mathbf{A} = \frac{\mu_0}{4\pi} \int \mathbf{J}(\mathbf{r}') \left[-4\pi \delta^3(\mathbf{r}) \right] d\tau' = -\mu_0 \mathbf{J}(\mathbf{r}). \checkmark$$