Solutions to Linear Systems - Linear Independence - Spanning Sets

1. Given the following non-homogeneous linear system,

$$
\begin{aligned}
x_{1}+3 x_{2}-5 x_{3} & =4 \\
x_{1}+4 x_{2}-8 x_{3} & =7 \\
-3 x_{1}-7 x_{2}+9 x_{3} & =-6 .
\end{aligned}
$$

Describe the solution set of the previous system in parametric vector form, and provide a geometric comparison with the solution to the corresponding homogeneous system.
2. Let,

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & -3 & -4 \tag{1}\\
-3 & 2 & 6 \\
5 & -1 & -8
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

(a) Show that the equation $\mathbf{A x}=\mathbf{b}$ does not have a solution for all possible $\mathbf{b} \in \mathbb{R}^{3}$.
(b) Describe the set of all $\left\{b_{1}, b_{2}, b_{3}\right\}$ for which $\mathbf{A} \mathbf{x}=\mathbf{b}$ does have a solution.
3. Define,

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 3 & -2 & 2 \tag{2}\\
0 & 1 & 1 & -5 \\
1 & 2 & -3 & 7 \\
-2 & -8 & 2 & -1
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{cc}
5 & 3 \\
-4 & 7 \\
9 & -2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
22 \\
20 \\
15
\end{array}\right]
$$

(a) Do the columns of \mathbf{A} span \mathbb{R}^{4} ?
(b) Is \mathbf{b} a linear combination of the columns of \mathbf{B} ?
4. Let,

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
0 \tag{3}\\
9 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
3 \\
-4 \\
1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
-4 \\
1 \\
1
\end{array}\right]
$$

(a) Does $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ form a linearly independent set?
(b) Does $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ span \mathbb{R}^{3} ?
5. Do the columns of,

$$
\mathbf{A}=\left[\begin{array}{ccc}
-4 & -3 & 0 \tag{4}\\
0 & -1 & 4 \\
1 & 0 & 3 \\
5 & 4 & 6
\end{array}\right]
$$

form a linearly independent set? Justify your answer.

