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Resonators

Ry~ plane-parallel 1Ry=00

* Resonators provide
feedback for the photons to H H
build up by passing through ., 7. i 512
the gain medium [(
» Curved mirrors are typically
used to control the beam S
size inside the gain medium H
* Types of resonators Rl hemipherical g
— Many resonators have more H “_::f_li::::-_::-
than two mirrors, but most can
be mapped onto a two-mirror R>L_ conee
system. H -

confocal R

CONCave-convex Rr=1L-R,

—



Periodic lens model

* A resonator can be “unfolded” by modeling the
curved mirrors as ideal lenses

2f

* Are there rays that will stay confined?
* |f so, resonator is stable.



Resonator ABCD model

* Build a ABCD matrix model of the periodic lens
sequence G omed R

— First get a round-trip matrix H ﬂ
A B
U B SR AORACEAGA

I ES )

— Free to choose starting point
— Focal length fand mirror separation L can vary

g — A B A B o After 2 round trips
r, C D C D ry



Resonator stability: ray picture

« Will a ray stay trapped?
* Look at whether r,, and r’, stay finite as n goes to

infinity 4 om T e
n . 0

» Method: MRT:[ A B ):U( S ]Ul
C D 0 A,

— Diagonalize matrix:



Stability condition

The ray will stay trapped (stable resonator) if
<1 [A,|<1 Lo Lol Reverse

A A |lb| propagation

A,

Therefore matrix eigenvalues must satisfy |1,|=|1,|=1
Property of ABCD: detM,, =44, =1

A =% =2
Trace of M is invariant upon rotation of matrix:

TtM,, =A,+A, =A+D

— e+ =2c0s6

Finally stability condition is: |-1=< <1




Some properties of ABCD matrices

1. Determinant = 1 if start and end points are in the
same medium (same refr. Index)

— Example: 1 0 1 L
-4 1 0 1

: .. 1
— Counter example: dielectric interface [ 0 )
0 n/n,

— Therefore, det M = 1, but note that eigenvalues can
be real or complex

2. Complex eigenvalues are of the form ¢
— Outside of stability range, eigenvalues are real
A=1/A4  TerM,=A+1/A,>2 if A, >1
3. M is not necessarily unitary (where M~ =M")

+i0



Stability for Gaussian beams in
resonators

» A stable resonator mode is one that repeats itself
on each round trip
— Amplitude and phase are matched -.94,., =4,
_Ag,+B
- Cqg,+D

q, =q0%AqO+B=q0(Cq0+D)

—0=Cq,”+(D—-A)g,— B
_(A-D) 1

= + A-DY +4BC
Go=""e t5-\(A-D)
; 1 1 .2 o
— Since q—=E—an2 q, must be complex (w is finite)

~.(A=D) +4BC <0



Stability for Gaussian beams in
resonators
» We know: (A-D) +4BC<0
 And, since det(M)=1 AD-BC=1
(A-D)’ +4BC =(A-D)’ +4(AD-1)
=A’-2AD+ D’ +4AD -4
=(A+D) -4<0
» Stability condition: (4 4 py’
4

<1

If this condition is satisfied,
curvature of each end

|/ ‘ ‘ . . ‘ N mirror matches wavefront
curvature.



2 mirror cavity stability

* |Important example

— many resonators can be mapped to a 2 mirror cavity
f1 f2

L

A RHARRE-

1 L 1 L

MZ( 1S -1/, ][ -1/f, 1—L/fz]



Stability for 2 mirror resonator

(A+ D)’ A+D

<]l—>-I< <1

 Stability condition:
— Evaluate A and D from round-trip matrix

1 L 1 L
MZ( ~1/f -1/, ][ -1/f, l—L/fz]

AZI_L/fz
D=—L/f+(1-L/f)(1-L/f,)

A+D 1 2L 2L 2L 2L 417
=— | l=—=—{fll=——"=—77]
2 2 R, R R R, RR,

2L 2L 2I° L L
= 2| 1-— || 1-— |-1=2g,g, -1
Rl R2 R1R2 Rl Rz

fl:R1/2 f2:R2/2




2 mirror stability and the stability map
A+ D

« Cavity is stable if -1< <1 -1<2g8,-1<1
Stable in shaded regions
Unstable in white regions 0=<gg,=1
i L ,__L
l I I I s=l-% g R,
e E— 1st and 3" quadrants:

Positive branch:
0 <g,9,<1stable
d4 9, > 1 unstable
No focal point inside resonator

('1 ’ 0)

Y
-

2nd and 4t quadrants:
Negative branch: g, g, <0

One center of curvature
' ] inside resonator

COTCAVECONVEX focal point inside resonator
(2, 1/3)

confocal
(0, 0)

( concentric )

(-1,-1)




Boundaries of stability glzl‘é =15

« Easily identified stable resonators
are actually at edge of stabilty

I I gz
hemispherical | I
(0,1)
plane-parallel
( l (1, 1)
(-1, 0) 1
y | s
@ +
0’ OY g1

( concentric ’

(-1,-1)

confocal
(0, 0)

concave-convex
(2, 1/3)

Ry=» plane-parallel Ry~
H |
- L =

R, /3 concentric (spherical) l(’z L2

R, / confocal R: L
(=

R, /;-—- hemispherical 2 J—
[I___:-—i::-_:ii-::i ::::_H
Ry=1 CORCAVC-COHVEr Ry=1L-R,



Determining beam sizes

 From g parameter

_ : A-D 1
For stable mode: g, = ( ) n (A- D)2 L ABC
2C 2C
And —=t-it st
— AN % R lnwz Beam waist is where Re[1/q,]=0
— S0 w'=- A =
ﬂlm[qo ]

— Which w is this? It is at the start/end position of the

ABCD
: For curved end mirror, split:

[ | e -

Then mode is collimated at end.



Symmetric cavities

* At end mirror, wavefront curvature matches
surface of mirror.

— Plano end mirror: waist at mirror

— Symmetric cavity (R,=R,, g,=g,): waist location at
center. Can fully specify mode w/o ABCD.

« Use Gaussian beam equations:

2 L 4 2
R=7 1+Z—§ — —| 1+ ZzR
Z 2 L

_L 2R AL |2R
“TNL T TN




Confocal cavity

« Symmetric cavity, focal points overlap

/\’I [ L'()I"?f()c’('f/ !‘.’* L

— Cavity length is equal to the confocal parameter

— Spot size: L L=2z=b
Wy = 4| —
21

— Confocal cavity has only ~40% variation of mode size
along cavity

— Least sensitivity to angular misalignment.



Scanning Fabry-Perot interferometer

« Confocal resonator

Partially Highly

reflective reflective
Reflected beam (e.g 94 or 98 %) (HR)

L

Confocal resonator (mirror distance = radius of mirrors)

Incoming N ) ﬁ
beam ><) :| PZT
)ﬁ\ ) ________

"Transmitted" beam

Confocal Scanning Fabry-Perot Interferometer
(Drawing by Christoph Bollig)

* Mode-matching: make input beam
iIdentical to desired output beam
— Set initial beam size and focusing lens

Transmitted beams

Look for beam overlap

See fringes: transmission
through curved mirrors
makes beams diverge



Example: 2GHz FP

* Free spectral range = 2GHz
= i% L: ¢
2L 2AvV

AV

— Cavity length L = 7.5cm

— Mode waist radius: _|AL
Yo = \ 27

Wy ~ 87um (for 632.8nm)
— Output mode waist radius: 2w, =123um

— In general, resonant frequency is different for higher-
order modes. If confocal FP is well-aligned, all even
modes are degenerate, and odd modes are midway
between TEMOO mode frequencies.



Near-planar and concentric limits

¢ Near'planar R Very Iarge >> L Ry~ plane-parallel RRy=o0

L\/E L2R\/%~R(l__) H : H

— Large, constant mode size. sensitive to angle misalignment

« Near-concentric: L ~ 2R
— LetL=2R -0L

L [2R 2R-0L 2R 5L ROL
Zp =4 |——1= —1=R || 1+ 1= =
2\ L 2 2R-0L 2R 2

— Small mode in center, large mode at curved mirrors
R, / 2 concentric (spherical) /\’; L/2
In general, position on stability map Hﬂ
controls mode size throughout cavity.




Higher-order resonator modes

— Higher-order resonator modes follow the Hermite-
Gaussian (or Laguerre-Gaussian) funcitons

w(z)

w(z)

_xz+y2 _ik(x2+y2)
E(X,y,Z) _ Aoe—i<kz—771m(2)) &e WZ(Z) Hl (@me (@]e 2R(z)

n,, =1+[+m)tan” (ij

<R
R(z) is independent of mode order

Resonant frequencies depend on
mode indices.

Extent of field is larger as mode
index increases — more diffraction
loss.




Eigenvalues for high-order standing
waves

* High-order modes generally have different
resonant frequencies

v =i(n+(1+l+mjcosl(im)j

2L T
— 2 mirror resonator:

1+7+ _ :
vnlmzi(rw( mjcos l(i\/glgz)) +ifg;and g; >0

T

-ifg,and g, <0
— Confocal: g,=9,=0

V = —(2n+(1+l+m)) Even modes are degenerate
nlm 1 l
Odd modes degenerate



Resonator stability analysis

* Resonators are designed under different
constraints and can be optimized

* Plot a stability parameter to show stable zone(s)
of operation
— Stability condition: —1<
— By convention to plot s parameter:

A+ D
<1

2
s=1— ( A+ D) Parameter is always positive in stable
2 zone



Focusing resonator

'-‘— 46.5 cm -

\ 10m

05m ]

—J 18.6cm l“— L2.5 cm

Fig. 5.20. Focusing resonator geometry

Nearly hemispherical resonator

« large mode on left

« Laser rod acts as aperture to limit TEMOO operation
« Second aperture to clean up beam
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Fig. 5.29. Astigmatic compensation of a folded resonator containing an optical element at Brewster’s
angle




Laser Rod
Output-Coupling Comer Cube
Waveplate

Fig. 5.30. Resonator using cross Porro prisms and polarization output coupling




2 mirror stability and the stability map
A+ D

« Cavity is stable if -1< <1 -1<2g8,-1<1
Stable in shaded regions
Unstable in white regions 0=<gg,=1
i L ,__L
l I I I s=l-% g R,
e E— 1st and 3" quadrants:

Positive branch:
0 <g,9,<1stable
d4 9, > 1 unstable
No focal point inside resonator

('1 ’ 0)

Y
-

2nd and 4t quadrants:
Negative branch: g, g, <0

One center of curvature
' ] inside resonator

COTCAVECONVEX focal point inside resonator
(2, 1/3)

confocal
(0, 0)

( concentric )

(-1,-1)




Unstable resonators

Unstable resonators often use beam magnification to output couple past
a mirror.
« Gain must be sufficient to overcome diffractive losses.

Outgoing beam

7 Telescope magnification:
\ ot R
| iR
T~ Output coupling loss per
i round trip: 2
/L P i - M? = (&j
SR A, R,
M1
Gain Medium M,

Output Beam
AN |

| I T (Doughnut Shape)

G

Resonator Mirror [ Resonator Mirror



Negative branch unstable resonators

3 D | Aperture at intermediate focus
/ - Acts as an internal spatial filter
d R
R, \ 4 :
’D sl o
M1 11 o 7
/l Laser Medium M2 scraper mirror” output
;
Output
Mirror Polarizer A/L Mirror
Aperture ] [ —]
| B o e
Polarization-coupled output

l B

| E

Laser
Rod



Variable-reflectivity Laser diodes

output mirror [ = == A Folding
' prism

| )
— gaVAN
Nd:YAG slab

#—1

Rear Pockels Al/4  Polarizer Cylindrical
mirror cell lens

Fig. 5.50. Diode-pumped Nd: YAG slab laser with positive-branch unstable resonator and variable reflec-
tivity output coupler [5.76]




Generalized ABCD

 Examples:
— Variable output coupling mirrors
— Radially-dependent gain
— Parabolic refractive index profiles
— Parabolic gain profiles — gain guiding
« ABCD with gain and loss lead to complex terms
— Qualitative change to stability
— Need additional modeling to calculate net gain and loss
(ABCD is for beam shape, not amplitude)



Variable reflectivity mirror

« Gaussian mirror: graded reflectivity dielectric
coating

e Beam curvature unaffected
e Beam size Is reduced:

—rz/wg —r2/w12 —r* w2

€ =€ € "



