
Interaction of light with atoms 
QM estimation of dipole radiation and lifetime 

Summary of time-dependent perturbation theory approach 

 

Reading: Svelto 2.3-2.4 



Interaction of light with a 2-level system 
•  Three allowed processes: 

–  Note photon energy matches transition energy 
–  All three process are related in the quantum picture 

•  First look at spontaneous emission: how do we 
get emission from a stationary state?  



Radiation from accelerating charge 
•  An accelerating charge “shakes” the field lines, creating 

radiating EM waves.  

 

 
•  Larmor formula for radiated power: 

–  Antennas, bremsstrahlung, cyclotron radiation… 
 
Prad =

1
4πε0

2
3
e2a2

c3
= 1
4πε0

2
3
e2!!x2

c3
= 1
4πε0

2
3
!!p2

c3
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p t( ) = −ex t( )

See link to physlet animation of 
radiation field lines from an 
oscillating charge: 

Dipole:  



Radiation from an oscillating charge 
•  Larmor formula for radiated power: 

 
 
 
–  If the charge is moving as 
–  The dipole is 
–  Then the radiated power is  

–  Power is proportional to E2, so radiated field is proportional to p(t) 
•  Charge distribution must oscillate to radiate 
•  Applied field induces oscillating dipoles, which re-radiate 

the field. 
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QM atomic transitions 
We’ll take an approach to understanding transitions from the 
quantum perspective 
•  An isolated atom in a pure energy eigenstate is in a 
stationary state:  

–  There is time dependence to the phase, but the amplitude remains 
constant. So, no radiation, no transitions. 

•  An applied EM field of the right frequency can induce a 
mixture of two states:  
 
–  Superposition: 

–  w/ normalization:   

 ψ n r,t( ) = un r( )e−Ent /

 ψ 1 r,t( ) = u1 r( )e−E1t /  ψ 2 r,t( ) = u2 r( )e−E2t /

ψ r,t( ) = a1 t( )ψ 1 r,t( ) + a2 t( )ψ 2 r,t( )

a1 t( ) 2 + a2 t( ) 2 = 1



QM charge distribution 
•  The electron is not localized in QM.  
•  The charge density can be calculated from ψ:  

•  For a stationary state:  

–  No time dependence, charge is not moving! 

•  For a superposition state: 

–  Cross terms will lead to time dependence in the charge.  

ρ r,t( ) = −eψ r,t( ) 2

 ρ r,t( ) = −eψ n r,t( ) 2 = −e un r( )e−Ent / 2 = −e un r( ) 2

ρ r,t( ) = −eψ r,t( ) 2 = −e a1ψ 1 + a2ψ 2
2

= −e a1ψ 1
2 + a2ψ 2
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*ψ 1ψ 2

* + a1
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QM dipole moment calculation 
•  The nucleus is localized, but the electron charge 

is spread over a probability distribution.  
•  The effective position is calculated like the center 

of mass, so dipole moment is:  

–  Note displacement r is in  
    the direction of E 

 
–  Terms in red go to zero by parity:     
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Time dependent dipole moment 
•  The cross terms (which are like interference terms 

in optics), lead to time dependent oscillation: 

–  Oscillation frequency:  
 

µosc t( ) = −e a1a2
* rψ 1ψ 2

* dV∫ + a1
*a2 rψ 1

*ψ 2 dV∫( )
= −e a1a2

* ru1 r( )u2* r( )e+ i E2−E1( )t /! dV∫ + a1
*a2 ru1

* r( )u2 r( )e− i E2−E1( )t /! dV∫( )
 ω 21 = E2 − E1( ) / !

µosc t( ) = a1a2*µ21eiω21t + a1
*a2µ12e

− iω21t = Re 2a1a2
*µ21e

iω21t⎡⎣ ⎤⎦

µ21 = u1 r( ) −er( )u2* r( )dV∫ Dipole “matrix element” 

•  µ21 is the part that depends on the atomic structure, 
independent of the populations. 

•  This is a vector: the direction of r is along the E-field direction, 
•  The atom or molecule may have any orientation to this.  



QM dipole radiated power 
•  Use classical Larmor expression to estimate the radiated 

power from this oscillating dipole.  
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QM dipole radiation: rate of decay 
•  Simplify the cycle-averaged radiated power  

•  If we assume that the excitation probability of the upper 
level is small, then 

•  We can then deduce the change in upper level population:  
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d
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a2 t( ) 2 ≈ − 1

τ sp
a2 t( ) 2 → a2 t( ) 2 ≈ a2 0( ) 2 exp −t /τ sp⎡⎣ ⎤⎦

This connects the spontaneous emission rate to a quantum 
calculation of the dipole moment.  



Selection rules 
•  In Dirac notation, the dipole matrix element is: 

•  Working with the symmetries of wavefunctions leads to 
selection rules about which transitions can take place.  
–  Parity: r is odd, so u1 must be opposite parity of u2 

–  Angular momentum:   Δl = ±1. Photon has1 unit of ang. mom.  
    Δm = 0, ±1 

•  Exceptions:  
–  Transition might take place under other moments:  

•  Magnetic dipole, electric quadrupole, etc. 
•  Leads to longer lifetimes.  

–  States might not be “pure”, mixture of eigenstates 
•  External or internal perturbations 

µ21 = u1 r( ) −er( )u2* r( )dV∫ = 2 − er 1



HeNe laser transitions 
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Full QM approach 
•  Next level up in accuracy in QM is to approximately solve 

the Schrodinger equation in the presence of the incident 
field 
–  QM representation of the electron wavefunction  
–  Classical representation of the EM field as a perturbation 

•  Without external field:          With external field (E-dipole): 

•  Assume wavefunction with field can be written in terms of 
a linear combination of wavefunctions without field 

ψ r,t( )

 ψ n r,t( ) = un r( )e−Ent /

 
Ĥψ = i ∂ψ

∂t

→ Ĥ0ψ n = Enψ n 
Ĥ0ψ = i ∂ψ

∂t

Ĥ = Ĥ 0+ ′Ĥ

ψ r,t( ) = an t( )ψ n r,t( )
n
∑

′Ĥ = µ ⋅E = −er ⋅E0 sinωt



Framing the QM calculation 
•  Time-dependent SE with external field 

–  Applied field is built into the calculation 
–  Dot product ensures r is along E 

•  Equation describes evolution of wavefunction 
–  Independent of initial state 
–  Absorption  and stimulated emission are the same, only 

initial state is different 
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Spontaneous emission and QED 
•  What if there is no incident field?  
•  If atom is in an excited state, it is in an unstable 

equilibrium.  
•  But the vacuum fluctuations of the EM field (QED)  

“stimulate” emission spontaneously.  
•  Concept leads to “cavity QED” experiments, 

where an external cavity is used to shape/control 
the background radiation spectrum to enhance or 
suppress spontaneous emission. 



Time-dependent perturbation theory 
•  Easiest to concentrate on 2 levels 
•  Assume input frequency is close to resonance: 

•  Assume weak probability of excitation: 

•  Put form of solution into time-dependent SE (with field) 
•  Transition rate (in Hz) will be 

•  Result: “Fermi’s Golden Rule”  

 ω ≈ E2 − E1( ) /  =ω 21
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Fermi’s golden rule 
•  Express field2 in terms of (total) energy density: 

•  When EM source varies in frequency, energy density btw 
ν’ and ν’+dν’ is 

•  So the contribution to the rate at ν’ is 

•  Total rate is: 
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For other lineshape:  



Working with spectral lineshapes 
•  For atomic system, replace Dirac delta with transition 

lineshape 

•  Lorentzian lineshape (radiative, collisional broadening) 

 
•  Doppler broadened (Gaussian) lineshape 
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Lorentzian vs Gaussian lineshapes 
•  Lorentzian is much broader in spectral wings than 

Gaussian 
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Natural broadening 
•  Radiative broadening results directly from the 

spontaneous emission lifetime of the state 
•  Fourier transforms 

–  Forward: FT 

–  Inverse: FT-1 

•  Suppose exponential, oscillating decay in time domain 
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Lorentzian lineshape 
•  Complex Lorentzian separated into Re and Im 

–  Real part corresponds to absorption effects 

•  Normalize 

•  Convert ω to ν 
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