Interaction of light with atoms

QM estimation of dipole radiation and lifetime

Summary of time-dependent perturbation theory approach

Reading: Svelto 2.3-2.4



Interaction of light with a 2-level system

* Three allowed processes:

absorption Spontaneous emission Stimulated emission
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— Note photon energy matches transition energy
— All three process are related in the quantum picture

* First look at spontaneous emission: how do we
get emission from a stationary state?



Radiation from accelerating charge

* An accelerating charge “shakes” the field lines, creating

radiating EM waves. \

See link to physlet animation of
radiation field lines from an
oscillating charge:

http://www.compadre.org/Physlets/optics/prob32_ 6.cfm

« Larmor formula for radiated power:
1 zezaZ_ 1 %ez)’éz_ 1 %p’Z
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Dipole:

— Antennas, bremsstrahlung, cyclotron radiation...



Radiation from an oscillating charge

« Larmor formula for radiated power:
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— If the charge is moving as  x(t) = x, cos wt

— The dipole is p(t):—exo CcOS Wt
— Then the radiated power is
1 2% (¢ 1 2¢° 1 2w
rad — A 3( ):_ A 3w4x§COSzwt:_ A 3 pz(t)
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— Power is proportional to E?, so radiated field is proportional to p(t)
« Charge distribution must oscillate to radiate

* Applied field induces oscillating dipoles, which re-radiate
the field.



QM atomic transitions

We’'ll take an approach to understanding transitions from the
gquantum perspective

* An isolated atom in a pure energy eigenstate is in a

Stationary state: o (r,t) = (r)e—Ent/h

— There is time dependence to the phase, but the amplitude remains

constant. So, no radiation, no transitions.

* An applied EM field of the right frequency can induce a
mixture of two states:

v (r.0)=u (r)e "y, (,0) = uy (r)e ="

— Superposition:
sei> 1//(r,t):al(t)y/l(r,t)+a2(t)1//2(r,t)

— w/ normalization: ‘al(t)‘z +‘a2(;)‘2 _1



QM charge distribution

The electron is not localized in QM.
The charge density can be calculated from w:
p(r.r)=—dw(r.c)
For a stationary state:
p(r.t)=—ely,(r.r)’ u, (r)
— No time dependence, charge is not moving!

For a superposition state:
2
p(l’,t)z—e‘l//(l',t) :_e‘aﬂ”l""azl//z
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— Cross terms will lead to time dependence in the charge.



QM dipole moment calculation

* The nucleus is localized, but the electron charge
IS spread over a probability distribution.

* The effective position is calculated like the center
of mass, so dipole moment is:

u(t)=—e[ely(r.0) ;

2 applied
dV p=gqr=p
— Note displacementris in

the direction of E

jr |all//1|2 dV + jr|azl//2|2 dV

+J.a1a2 ry\y, dV+ Jal ary, y,dv

— Terms in red go to zero by parity: ‘l//n(l')‘z is even



Time dependent dipole moment

* The cross terms (which are like interference terms
In optics), lead to time dependent oscillation:

i, (1)= —e(ala;_‘.rl/fll//; dV + al*azjrwl*wz dV)
— _e(alaz*jr U, (r)uz* (r) BB dV + al*azjr “1* (r)u2 (r)e_i(EfEl)t/h dV)
— Oscillation frequency: ®,, =(E,—E,)/h
i, (t)=aa, wn,e"" +a a,u,e™" = Re[2a1a2*uzleiw21t]
Ly = Jul (r)(—er)uz* (r)dv Dipole “matrix element”
* My, is the part that depends on the atomic structure,

independent of the populations.
* This is a vector: the direction of r is along the E-field direction,

 The atom or molecule may have any orientation to this.



QM dipole radiated power

« Use classical Larmor expression to estimate the radiated
power from this oscillating dipole.
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QM dipole radiation: rate of decay

« Simplify the cycle-averaged radiated power

4 2 3 2
Q) ,u 2 2 0 ,U 2
_ 21 21 _ 21 21
<Pmd>— |a1| |a2| = ho,, |a1| |a2

|2 Photon energy
3 3
3me, C TTE C Rate (frequency)

 If we assume that the excitation probability of the upper

level is small, then
|a1|2 = 1—|a2|2 ~1

 We can then deduce the change in upper level population:

Define:
dE d 2 3
r=—(Pu)=to, Llaf g - L3t
dt dt ’ A21 6021 :u21

d 1
E‘az (f)‘z z_T_‘GZ (f)‘z —|a, (t)‘z =|a, (O)‘zeXp[_t/Tsp]
sp

This connects the spontaneous emission rate to a quantum
calculation of the dipole moment.
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Selection rules

* |In Dirac notation, the dipole matrix element is:
= [, (£) (=er)u, (x)av = (2]~ ex|1)

« Working with the symmetries of wavefunctions leads to
selection rules about which transitions can take place.
— Parity: ris odd, so u, must be opposite parity of u,
— Angular momentum: Al = £1. Photon has1 unit of ang. mom.
Am =0, +1

* Exceptions:
— Transition might take place under other moments:
« Magnetic dipole, electric quadrupole, etc.
 Leads to longer lifetimes.
— States might not be “pure”, mixture of eigenstates
« External or internal perturbations
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HeNe laser transitions

21— Helium Neon
2le S5s
} Sy 4p
Collision
20 2’s
_ﬁ—
|
19
[N
o
18-
o
<
) Q
o
" a
g
@
n
I
16_: L L
O 11 S [ 152 252 2p6

Ground state

FIG. 10.1. Relevant energy levels of the He-Ne laser.
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Fig. 3: The most important laser transitions in the neon



Full QM approach

* Next level up in accuracy in QM is to approximately solve
the Schrodinger equation in the presence of the incident
field

— QM representation of the electron wavefunction W(l',t)
— Classical representation of the EM field as a perturbation

ﬁz.,,:m%_‘/t’ A=0 + B
« Without external field: With external field (E-dipole):
I_Alol// %—l/: —~H WV, =EWvw, PAI'=,u-E=—er-E0sina)t

 Assume wavefunction with field can be written in terms of
a linear combination of wavefunctions without field

Za t)y, (r.) v, (rr)=u,(r)e

—E,t/h



Framing the QM calculation

« Time-dependent SE with external field

ﬁw:ih%—l/:
ihaa—l/tj = (ﬁo +PAI’)1// = (ﬁo —er-E, sina)t)l//

— Applied field is built into the calculation
— Dot product ensures r is along E

« Equation describes evolution of wavefunction
— Independent of initial state

— Absorption and stimulated emission are the same, only
initial state is different



Spontaneous emission and QED

What if there is no incident field?

If atom is in an excited state, it is in an unstable
equilibrium.

But the vacuum fluctuations of the EM field (QED)
“stimulate” emission spontaneously.

Concept leads to “cavity QED” experiments,
where an external cavity is used to shape/control
the background radiation spectrum to enhance or
suppress spontaneous emission.



Time-dependent perturbation theory

Easiest to concentrate on 2 levels
Assume input frequency is close to resonance:
~(E,—E,)/h=aw,
Assume weak probability of excitation:
a(r)=1, a,(r)<1
Put form of solution into time-dependent SE (with field)

Transition rate (in Hz) will be
d

dt

2

W, = ‘az ‘

Result: “Fermi’s Golden Rule §(v—v,) Dirac delta function

le(V):%wzlrEo%(V_vo) Jf V v dv f( )




Fermi’s golden rule

« Express field? in terms of (total) energy density:

1 2 2
p=7n"€k, For other lineshape:
21’

27
P |.u21|2 pg(V—VO)

3n°g,h’

- W, (v)= |.U21| p5(v V)

 When EM source varies in frequency, energy density btw
v and v'+dv'is dp=p, dv’
* So the contribution to the rate at v’ is

2m?

dw,, (V') = 2 |.u21|2 Py g(V —V )dv,

 Total rate is:




Working with spectral lineshapes

* For atomic system, replace Dirac delta with transition
lineshape
jg(v—vo)dv =1

« Lorentzian lineshape (radiative, collisional broadening)

2 1
5(V—VO)%8L(V—VO):7TAV Y -
. _
AVO FWHM 1+( AVOO j

* Doppler broadened (Gaussian) lineshape

2
" 2 [In2 V-V
S(v—-v,)— g, (V_VO)ZAV* Iylr exp{—4ln2(Av fz) }
0 0




Lorentzian vs Gaussian lineshapes

* Lorentzian is much broader in spectral wings than
Gaussian

1.0 ¢
08
06
04

021




Natural broadening

« Radiative broadening results directly from the
spontaneous emission lifetime of the state

 Fourier transforms
— Forward: FT F(w):J'_‘” f(t)eiwtdt

— Inverse: FT-! f(t):i :OF(w)e—ia)t do

« Suppose exponential, oscillating decay in time domain

-yt _—iWyt

N= €€ fort =0
f( ) 0 fort <0
_ | | (—y+i(w-w,))t
F(a)):J. e‘?’t—lwotelwtdtz e _ . 1
0 . y—z(a)—a)o)

—y+i(o-w,)
Complex Lorentzian




Lorentzian lineshape

« Complex Lorentzian separated into Re and Im
1 _ Y : (w — (00)
, = T i s
y-ilo-0,) (0-0,)+y> (0-0,) +7
— Real part corresponds to absorption effects

* Normalize
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