
2/14/17	

1	

10	
Harmonic	genera1on	with	focused	beams	

Fourier	transforms	
pulse	propaga1on	

Harmonic	genera.on	with	focused	Gaussian	beams	

•  qth	harmonic:		

•  Spot	size	is	smaller:		
•  Rayleigh	range	is	the	same:		

•  no	deple1on	
	
•  Assume	harmonic	propagates	as	a	TEM00	beam	
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Develop	equa.on	for	Aq(z)	

•  Gaussian	beam	is	a	solu1on	for	wave	equa1on,	so	
homogeneous	part	of	equa1on	(LHS)	is	

•  Simplify	wave	equa1on:	
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Phase	matching	integral,	non-depleted	limit	

•  Both	fundamental	and	harmonics	are	Gaussian	
beams	with	matched	Rayleigh	ranges		

–  Assume	nq	=	n1	(e.g.	gas)	Since	

–  Equa1on	for	Aq(z)	simplifies		

If		
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New	phase	matching	integral	

•  We	start	with	equa1on	for	Aq:	

–  Integrate	this	directly		

→ Aq0 z( ) = i ω q

2nqε0c
χ (q)A1

qJq z( )

Jq z( ) = 1
1+ i ′z / zR( )q−1
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∂
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Harmonic	genera.on	in	the	.ght	focusing	limit	

•  Here	we	integrate	over	all	z:	

•  For	q>2,	zero	yield	unless	Δk>0		

Jq Δk, zR( ) =
0 Δk < 0

zR
2π

(q − 2)!
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Small	thickness	limit		
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The	frac1on	in	the	integrand	is	connected	to	the	Gouy	phase:	

η z( ) = arctan z
zR

⎛
⎝⎜

⎞
⎠⎟

This	shows	where	the	op1mum	phase	mismatch	should	be.	
This	limit	is	related	to	HG	in	waveguides,	since	the	WG	phase	scales	like	z/zR	

Measuring	localiza1on	with	THG	

•  Z-scan	of	fused	silica	interface	leads	to	observed	THG	
through	par1al	phase	matching	

			 TH	 PMT No	THG	from	bulk	
	
THG	emerges	with	
spa1al	chirp	

Axial	FWHM	=	confocal	parameter	of	
fundamental	in	air	
	
SSTF	reduces	FWHM	consistent	with	
beam	aspect	ra1o	

E.	Block	
O.	Masihzadeh	
C.	Durfee	
J.	Squier	
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THG	microscopy	
•  Label/dye-free	signal.	Wi)e	et	al	PNAS	v108,	5970	2011	

Fourier	transforms:	t-ω	domain	

•  In	EM,	our	signals	are	complex	fields	
•  1/2π	factor	is	lumped	into	inverse	transform	
•  ω	is	our	frequency	variable,	not	ν.	This	affects	the	normaliza1on	constants	
•  Note	signs	of	exponents:	this	is	1ed	to	our	exp(-i	ω	t)	conven1on	
•  Techniques	

–  Analy1c:	apply	transform	IDs	and	theorems	to	decompose	a	transform	into	its	parts	
–  Analy1c	in	Mathema1ca:	can	do	some	FTs	but	not	always	expressed	in	recognizable	way	
–  Graphical:	aeer	iden1fying	components	of	a	transform,	sketch	the	an1cipated	result	
–  Numerical:	FFT	for	calcula1ng	complicated	or	realis1c	cases	for	modeling/data	analysis	

F ω( ) = f t( )e+ iωt dt = FT f t( ){ }
−∞

∞

∫
f t( ) = 1

2π
F ω( )e− iωt dt = FT −1 F ω( ){ }

−∞

∞

∫
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FT	of	a	Gaussian	

•  Star1ng	integral:	
–  True	even	if	z	is	complex	

•  Complete	the	square	in	the	exponent…	

f t( ) = e− t2 /t02

e− z
2
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∞

∫ = π
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2
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∞

∫

FT	of	a	Gaussian	is	a	Gaussian	

•  Star1ng	integral:	
–  True	even	if	z	is	complex	

•  Complete	the	square	in	the	exponent	

–  Change	variables:	
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Time-bandwidth	product	

•  “uncertainty	principle”	comes	from	FT	rela1ons	

–  Pulse	dura1on:		t0	
–  Spectral	width	(bandwidth):	δω	=	2/t0	
–  Time-bandwidth	product:			t0δω	=	2	

•  This	rela1on	depends	on	how	widths	are	defined	
–  Here	we’ve	been	using	1/e	half	width	in	the	field	
–  For	FWHM	in	intensity:	

FT e− t
2 /t0

2( )→ t0 e
−1
4
ω 2 t0

2

E t( ) = E0e−2 ln2t
2 /τ 2 → I t( )∝ e−4 ln2t

2 /τ 2

τ = t0 2 ln2 Δω = δω 2 ln2

t0δω = 2 = τΔω
2 ln2

→τΔω = 4 ln2 ≈ 2.77 τ Δν = 4 ln2
2π

≈ 0.44

Bandwidth	for	transform-limited	pulses	

•  The	bandwidth	in	frequency	space	is	independent	of	
the	central	frequency	
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FT(rect)=sinc	and	Dirac	delta	

•  Rect(t/t0)	

•  Dirac	delta	
–  Limit:	

–  At	ω=0,	limit	is	∞	
–  ω≠0,	limit	is	0	in	sense	that	integral	over	rapid	osc	sin(	)	is	0	
–  Normaliza1on:		

rect t
t0

⎛
⎝⎜

⎞
⎠⎟
= 1 for t < t0

2

F ω( ) = rect t / t0( )e+ iωt dt
−∞

∞

∫ = e+ iωt dt
− t0 /2

t0 /2

∫ = 1
iω

e+ iωt0 /2 − e− iωt0 /2( )

= t0
sin ωt0 / 2( )
ωt0 / 2

= t0 sinc ωt0 / 2( )

δ t( )dt
−∞

∞

∫ = 1

δ ω( ) = lim
t0→∞

FT rect t / t0( ){ } = lim
t0→∞

t0 sinc ωt0 / 2( )⎡⎣ ⎤⎦

FT 1{ } = 2πδ ω( ) FT −1 1{ } = δ t( )

FT	theorems	

scaling	

shiG	
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FT	Theorems	

ℑ f (t − t0 ){ } = exp +iω t0( )F ω( ) ℑ−1 F ω −ω 0( ){ } = exp −iω 0t( ) f t( )

ℑ f (at){ } = 1
a
F ω / a( ) ℑ−1 F(bω ){ } = 1

b
f t / b( )

ℑ f *(t){ } = F * −ω( )

Shie	theorem	

Scale	theorem	

Conjuga1on	

Symmetry	proper1es	of	FT	



2/14/17	

10	

Represen1ng	an	op1cal	pulse	in	t	and	ω	spaces	
•  Two	ways	to	represent	the	field	of	a	pulse:	

–  Time	domain	

–  Frequency	domain	

–  Both	posi1ve	and	nega1ve	frequency	components:	usually	neglect	
nega1ve	side	in	linear	op1cs	

•  Both	t	and	ω	representa1ons	contain	the	same	informa1on,	
same	total	energy.	

•  Phase	func.ons	not	the	same	in	both	domains	
•  Temporal	phase:		
•  Spectral	phase:	

E ω( ) = FT E t( ){ } = A r,ω −ω 0( ) ei k⋅r+ϕ ω−ω0( )( ) + A* r,ω +ω 0( ) e− i k⋅r−ϕ ω−ω0( )( )

E t( ) = A r,t( ) exp i k ⋅r − iω 0 t +φ t( )( )⎡⎣ ⎤⎦ + c. c.

E ω( ) ≈ A r,ω −ω 0( ) exp i k ⋅r +ϕ ω −ω 0( )( )⎡⎣ ⎤⎦

φ t( )
ϕ ω( )

Taylor	expansion	of	spectral	phase	

•  To	simplify	the	phase,	consider	the	first	two	terms	

•  In	real	situa1ons,	we	some1mes	have	to	include	
higher	order	phase,	3rd,	4th…	

( )200
0 1 2( ) ...

1! 2!
ω ωω ωϕ ω ϕ ϕ ϕ
−−= + + +

0

1
d
d ω ω

ϕϕ
ω =

=

where 

is the group delay. 

0

2

2 2

d
d ω ω

ϕϕ
ω =

= is called the “group-delay dispersion.” 

 ϕ0 =ϕ ω0( ) is the “absolute phase” 

 
τ g ω( ) = dϕ

dω

Slide	modified	from	R.	Trebino	
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Taylor	expansion	of	temporal	phase	

•  Here	we	expand	around	t=0,	i.e.	the	center	of	the	pulse	

•  In	real	situa1ons,	we	some1mes	have	to	include	higher	order	
phase,	3rd,	4th…	

  
φ(t) = φ0 + φ1

t
1!

+ φ2

t2

2!
+ ...

  
φ1 =

dφ
dt t=0

where 

the instantaneous frequency is  

  
φ2 =

d 2φ
dt2

t=0

is called the “temporal chirp.” 

 φ0 = φ 0( ) is the “carrier-envelope” or “absolute phase” 

 
ω inst t( ) = − dφ

dt

Slide	modified	from	R.	Trebino	

Intensity	and	phase	of	a	Gaussian	
•  The	Gaussian	is	real,	so	its	phase	is	zero	in	both	domains.	

Time	domain:	
	
	
	
	
	
	
Frequency	domain:	

So	the	spectral	phase	is	
zero,	too.	

A	Gaussian	
transforms	
to	a	Gaussian	

Intensity	and	Phase	

Spectrum	and	Spectral	Phase	

Slide	from	R.	Trebino	
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The	spectral	phase	of	a	1me-shieed	pulse	

  FT f (t − t0 ){ } = exp(+iω t0 )F(ω )Recall	the	Shie	Theorem:	

So	a	1me-shie	simply	
adds	some	linear	
spectral	phase	to	the	
pulse!	

Time-shieed	Gaussian	
pulse	(with	a	flat	phase):	

Intensity	and	Phase	

Spectrum	and	Spectral	Phase	

Slide	modified	from	R.	Trebino	

What	is	the	spectral	phase?	
The	spectral	phase	is	the	phase	of	each	frequency	in	the	wave-form.	

t 0 

All	of	these	
frequencies	have	zero	
phase.	So	this	pulse	
has:	

			φ(ω)	=	0	
Note	that	this	wave-
form	sees	
construc1ve	
interference,	and	
hence	peaks,	at		
t = 0.	

And	it	has	
cancella1on	
everywhere	else.	

w1	

w2	

w3	

w4	

w5	

w6	

Slide	modified	from	R.	Trebino	
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Linear	spectral	phase:	φ(ω) = aω.	
By	the	Shie	Theorem,	a	linear	spectral	phase	is	just	a	delay	in	1me.		

The	peaks	of	the	spectral	components	line	up	at	a	later	1me.	

t	

φ(ω1)	=	0	

φ(ω2)	=	0.2	π	

φ(ω)	=	0.4	π	

φ(ω4)	=	0.6	π	

φ(ω5)	=	0.8	π	

φ(ω6)	=	π	

Slide	modified	from	R.	Trebino	

Zeroth-order	phase:	the	absolute	phase	
•  The	absolute	phase	is	the	same	in	both	the	1me	and	frequency	

domains.	

•  An	absolute	phase	of	π/2	will	turn	a	cosine	carrier	wave	into	a	sine.	
•  It’s	usually	irrelevant,	unless	the	pulse	is	only	a	cycle	or	so	long.	

Different absolute phases 
for a single-cycle pulse 

Notice that the two four-cycle pulses look alike, but the three single-
cycle pulses are all quite different. 

f (t)exp(iφ0 ) → F(ω )exp(iφ0 )

Different absolute phases 
for a four-cycle pulse 

Slide	modified	from	R.	Trebino	
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First-order	phase	in	frequency:	a	shie	in	1me	

By	the	Fourier-Transform	Shie	Theorem,	
F(ω )exp(iωϕ1)→ f (t −ϕ1)

     

      

Time	domain	 Frequency	domain	

� 

ϕ1 = 0

  ϕ1 = − 20fs

Note	that	ϕ1	does	not	affect	the	instantaneous	frequency,	but	the	group	delay	=	
φ1.	 Slide	modified	from	R.	Trebino	

First-order	phase	in	1me:	a	frequency	shie	

•  By	the	Inverse-Fourier-Transform	Shie	Theorem,	

  f (t)exp(−iφ1 t)→ F(ω −φ1)

     

      

Time	domain	 Frequency	domain	

1 0 /φ = fs

  φ1 = − .07/ fs

Note	that	ϕ1	does	not	affect	the	group	delay,	but	it	does	affect	the	instantaneous	
frequency.	

Slide	modified	from	R.	Trebino	
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Second-order	phase:		the	linearly	chirped	pulse	

•  A	pulse	can	have	a	frequency	that	varies	in	1me.	

This	pulse	increases	its	frequency	linearly	in	1me	(from	red	to	blue).	
	
In	analogy	to	bird	sounds,	this	pulse	is	called	a	"chirped"	pulse.	

Slide	modified	from	R.	Trebino	

  

E(t) = A t( )exp i φ t( )⎡⎣ ⎤⎦
= E0 exp −(t / τG )2⎡⎣ ⎤⎦exp −i ω0t + βt2( )⎡

⎣
⎤
⎦

The	linearly	chirped	
Gaussian	pulse	

•  We	can	write	a	linearly	chirped	Gaussian	pulse	mathema1cally	as:	

Chirp	Gaussian		
amplitude		

Carrier	
wave	

Note	that	for	β	>	0,	when	t < 0,	the	two	terms	par1ally	cancel,		
so	the	phase	changes	slowly	with	1me	(so	the	frequency	is	low).	
And	when	t > 0,	the	terms	add,	and	the	phase	changes	more	rapidly	
(so	the	frequency	is	larger).	

Slide	modified	from	R.	Trebino	
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The	instantaneous	frequency	
vs.	1me	for	a	chirped	pulse	

A	chirped	pulse	has:	
	
	
	
where:	
	
	
The	instantaneous	frequency	is:				

	 	 	 	 		
	
which	is:	
							 		
	
So	the	frequency	increases	linearly	with	1me.	This	is	posi<ve	
chirp.		

  
E(t) ∝ exp i −ω0t +φ(t)( )⎡⎣ ⎤⎦

  φ(t) = −βt2

  ω inst (t) ≡ω0 − dφ / dt

0( ) 2inst t tω ω β= +

(note	the	sign	change)	

Slide	modified	from	R.	Trebino	

The	nega1vely	chirped	pulse	

•  We	have	been	considering	a	pulse	whose	frequency	
increases	

•  linearly	with	1me:	a	posi<vely	chirped	pulse.	

•  One	can	also	have	a	nega<vely		
•  chirped	(Gaussian)	pulse,	whose		
•  instantaneous	frequency		
•  decreases	with	1me.			

•  We	simply	allow	β   to	be	nega1ve	
•  in	the	expression	for	the	pulse:	

•  And	the	instantaneous	frequency	will	decrease	with	1me:	
  

E(t) = E0 exp − t / τG( )2⎡
⎣⎢

⎤
⎦⎥exp −i ω0t + βt2( )⎡

⎣
⎤
⎦

= E0 exp − t / τG( )2⎡
⎣⎢

⎤
⎦⎥exp −i ω0t − β t2( )⎡

⎣
⎤
⎦

0 0( ) 2 2inst t t tω ω β ω β= + = −
Slide	modified	from	R.	Trebino	
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The Fourier transform 
of a chirped pulse

•  Writing a linearly chirped Gaussian pulse as: 

•  or: 

•  Fourier-Transforming yields: 

•  Rationalizing the denominator and separating the real and 
imag parts: 

A Gaussian with 
a complex width! 

A chirped Gaussian pulse 
Fourier-Transforms to itself!!! 

   
E (t) ∝ E0 exp −αt2⎡⎣ ⎤⎦exp −i ω0t + βt2( )⎡

⎣
⎤
⎦ + c.c

   
E (t) ∝ E0 exp − α + iβ( )t2⎡⎣ ⎤⎦exp −iω0t⎡⎣ ⎤⎦ + c.c.

   
E(ω ) ∝ E0 exp − 1/ 4

α + iβ
ω −ω0( )2⎡

⎣
⎢

⎤

⎦
⎥

   
E(ω ) ∝ E0 exp − α / 4

α 2 + β 2 ω −ω0( )2⎡

⎣
⎢

⎤

⎦
⎥exp +i β / 4

α 2 + β 2 ω −ω0( )2⎡

⎣
⎢

⎤

⎦
⎥

where 21/ tα ∝ Δ

neglecting the negative-frequency 
term due to the c.c. 

Slide	modified	from	R.	Trebino	

2nd-order phase: positive linear chirp
• Numerical example: Gaussian-intensity pulse w/ positive 
linear chirp, ϕ2 = –0.032 rad/fs2 or φ2 = 290 rad fs2.  

      

     
Here the quadratic phase has stretched what would have been a 
3-fs pulse (given the spectrum) to a 13.9-fs one. Slide	modified	from	R.	Trebino	
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2nd-order phase: negative linear chirp
• Numerical example: Gaussian-intensity pulse w/ negative 
linear chirp, ϕ2 =+0.032 rad/fs2 or φ2 = – 290 rad fs2.  

As with positive chirp, the quadratic phase has stretched what 
would have been a 3-fs pulse (given the spectrum) to a 13.9-fs one. 

Slide	modified	from	R.	Trebino	

Group	delay	vs	spectral	phase	

•  The	group	delay	gives	the	arrival	
1me	of	the	different	frequency	
components	

•  So	a	posi1ve	2nd	order	phase	gives	a	
posi1ve	slope	to	the	group	delay:	

 
τ g ω( ) = dϕ

dω

 
ϕ(ω ) = ϕ0 + ϕ1

ω −ω0

1!
+ ϕ2

ω −ω0( )2

2!
+ ...

-3 -2 -1 1 2 3

-6

-4

-2

2

4

6

8
τ ω( )

ϕ ω( )

ω
ω 0

Not	usually	
important:		
•  phase	constant	
•  group	delay	shie		

Use	group	delay	
varia.on	to	visualize	
chirp.		
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E-field vs. time 

E(t) 

3rd-order spectral phase: quadratic chirp

• The red and blue colors coincide in time and interfere. 

Trailing satellite pulses in time indicate positive spectral cubic phase, 
and leading ones indicate negative spectral cubic phase. 

S(ω) 

τg(ω) 
ϕ(ω) 

Spectrum and spectral phase 

Slide	modified	from	R.	Trebino	

Pulse propagation
• What happens to a pulse as it propagates through a medium? 
• Always model (linear) propagation in the frequency domain. Also, 
you must know the entire field (i.e., the intensity and phase) to do so. 

   
Eout (ω ) = Ein(ω ) exp −α (ω )

2
L

⎡

⎣
⎢

⎤

⎦
⎥exp i k(ω ) L⎡⎣ ⎤⎦

In the time domain, propagation is a convolution—much harder. 

   
Ein(ω )    

Eout (ω )( )
( )n

α ω
ω

ωω

Slide	modified	from	R.	Trebino	
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( ) ( ) exp[ ( ) ]out inS S Lω ω α ω= −

( ) ( ) ( )out in n L
c
ωϕ ω ϕ ω ω= +

Pulse propagation  
(continued)

   
Eout (ω ) = Ein(ω ) exp[−α (ω )L / 2] exp[iωn(ω ) L / c]

Separating out the spectrum and spectral phase: 

Rewriting this expression using k =n(ω) ω/c: 

   
Ein(ω )    

Eout (ω )

Absorption (or gain) modifies the spectral amplitude,  
Refractive index modifies the spectral phase 

Slide	modified	from	R.	Trebino	

Pulse	propaga1on:	t/ω	domains	

•  Dispersion	in	a	system	will	stretch	a	short	pulse:	

•  Linear	propaga1on	is	best	represented	in	ω	space:	
Eout ω( ) = A ω −ω0( )eiφ ω( )

φ ω( ) = k L =
ω
c
n ω( )L

Spectral	phase	

t	(fs)	 t	(fs)	

ω	(rad/fs)	

2mm	
glass	

Chirped pulse 
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Propaga1on	of	a	Gaussian	pulse	

•  Start	with	pulse	in	t-domain	

•  FT	to	frequency	space:	

•  Apply	phase	shie	that	results	from	propaga1on:		

–  Note	that	the	phase	terms	are	typically	propor1onal	to	z	
•  Next:	inverse	transform	to	t-domain.	

E z = 0,t( ) = A0 e− t
2 /t0

2

e− iω0 t

E z = 0,ω( ) = FT E t( ){ } = A0 t0 e
−1
4

ω−ω0( )2 t02

E z,ω( ) = A0 t0 e
−1
4

ω−ω0( )2 t02e
i ω
c
n ω( )z

≈ A0 t0 e
−1
4

ω−ω0( )2 t02e
i ϕ0+ ω−ω0( )ϕ1+12 ω−ω0( )2ϕ2⎛
⎝⎜

⎞
⎠⎟

= A0 t0 e
iϕ0 exp i ω −ω 0( )ϕ1⎡⎣ ⎤⎦exp − ω −ω 0( )2 t0

2

4
− i 1
2
ϕ2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

Constant	phase	 Group	delay	shie	 Chirp	

Propagated	pulse	in	1me	domain	

•  In	the	1me-domain,	pulse	can	be	wri|en	

•  We	will	use	the	shie	theorem	for	carrier	and	group	delay,	so	
consider	this	integral:	

•  So	that	

•  Note	that	the	group	delay	is	just	the	transit	1me	through		

E z,t( ) = A0 t0
1
2π

eiϕ0 exp i ω −ω 0( )ϕ1⎡⎣ ⎤⎦exp − ω −ω 0( )2 t0
2

4
− i 1
2
ϕ2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥e

− iωt dω∫

f t( ) = 1
2π

exp −δω 2 t0
2

4
− i 1
2
ϕ2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥e

− i δω t dδω∫

E z,t( ) = A0 t0eiϕ0−iω0t f (t −ϕ1)

  
ϕ1 = τ g ω0( ) = dϕ

dω ω=ω0

= dk
dω ω=ω0

⋅ L = L
v g
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Chirped	output	pulse	

•  We’re	doing	the	FT	of	a	complex	Gaussian	

f t( ) = 1
2π

exp −δω 2 t0
2

4
− i 1
2
ϕ2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥e

− i δω t dδω∫

FT −1 exp −T 2ω 2 / 4( ){ } = 1
π T 2

exp −t 2 /T 2( ) T 2 = t0
2 − 2iϕ2

f t( ) = 1

π t0
2 − 2iϕ2( )

exp − t 2

t0
2 − 2iϕ2

⎛
⎝⎜

⎞
⎠⎟

1
t0
2 − 2iϕ2

= t0
2 + 2iϕ2

t0
4 + 4ϕ2

2 =
1+ 2iϕ2

t0
2

t0
2 1+ 2ϕ2

t0
2

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜

⎞

⎠
⎟

=
1+ 2iϕ2

t0
2

τ 2 z( )

T2	=	“complex	1me”	
~	q(z)	for	Gaussian	beams	

Chirped	output	pulse	

•  The	pulse	dura1on	and	chirp	parameter	vary	with	z	

•  This	dispersion	dependence	is	just	like	a	Gaussian	
beam	that	focuses	and	diverges.			

β z( ) = 1
τ 2 z( )

2ϕ2

t0
2

τ z( ) = t0 1+ 2ϕ2

t0
2

⎛
⎝⎜

⎞
⎠⎟

2

= t0 1+ 2k2
t0
2 z

⎛
⎝⎜

⎞
⎠⎟

2

	z-dependent	pulse	dura1on	

  
ϕ2 z( ) = d 2ϕ

dω 2
ω=ω0

= z d 2k
dω 2

ω=ω0

= k2z

	z-dependent	chirp	parameter	

f t( ) = 1

π t0
2 − 2iϕ2( )

exp − t 2

τ 2 z( )
⎛
⎝⎜

⎞
⎠⎟
exp −iβt 2( )
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Final	form	of	E(z,t)	

•  Leading	factor:	
f t( ) = 1

π t0
2 − 2iϕ2( )

exp − t 2

τ 2 z( )
⎛
⎝⎜

⎞
⎠⎟
exp −iβt 2( )

1
t0
2 − 2iϕ2

=
1+ 2iϕ2

t0
2

τ 2 z( ) = 1
τ z( ) 1+ 4ϕ2

2

t0
4

⎛
⎝⎜

⎞
⎠⎟

1/2

exp iarctan 2ϕ2

t0
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= 1

t0 1+
4ϕ2

2

t0
4

⎛
⎝⎜

⎞
⎠⎟

1/4 exp
i
2
arctan 2ϕ2

t0
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

τ z( ) = t0 1+ 2ϕ2

t0
2

⎛
⎝⎜

⎞
⎠⎟

2

f t( ) = 1
π

1
t0τ z( )

exp i
2
arctan 2ϕ2

t0
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥exp − t 2

τ 2 z( )
⎛
⎝⎜

⎞
⎠⎟
exp −iβt 2( )

Final	form	of	E(z,t)	

•  Complete	form	of	Gaussian	pulse	propaga1on	

•  Intensity	follows	1/pulse	dura1on	
•  z-dependent	phase	term	similar	to	the	spa1al	Gouy	phase	
•  Pulse	envelope	moves	at	the	group	velocity	
•  Dispersion	length:	characteris1c	distance	for	stretching:		

E z,t( ) = A0
π

1
t0τ z( )

e− iω0t+iϕ0 e
i
2
arctan 2ϕ2

t0
2

⎛
⎝⎜

⎞
⎠⎟ exp −

t −ϕ1( )2
τ 2 z( ) − iβ t −ϕ1( )2

⎛

⎝
⎜

⎞

⎠
⎟

τ z( ) = t0 1+ 2k2
t0
2 z

⎛
⎝⎜

⎞
⎠⎟

2

Ld =
t0
2

2k2
τ	increases	by	sqrt(2)	over	distance	Ld		
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Modal	dispersion	

•  Confinement	of	the	propaga1ng	mode	gives	a	
geometric	contribu1on	to	the	dispersion	

•  Example:	square	waveguide	

–  Find	transverse	modes:			

2a	

2a	

		
→n2

ω 2

c2
= k

x
2 +k

y
2 +k

z
2

		
∇2E +n2ω

2

c2
E =0

		
k
x
=
m

x
π

2a

0	

		E x , y ,z( ) = E0 sin kxx( )sin ky y( )eikzz
		kx ⋅2a=mx

π
		
k
y
=
m

y
π

2a

		
→ k

z
ω( ) = n2

ω 2

c2
−k

x
2 −k

y
2 = n2

ω 2

c2
− π 2

4a2 mx
2 +m

y
2( )

Indices	≥	1	

Dispersion	depends	
on	mode	

Modal	dispersion	affects	phase	and	group	velocity	

•  Group	delay	dispersion	has	a	geometric	contribu1on	
•  Consider	simple	case:	vacuum-filled	hollow	
waveguide	

		
k
z
ω( ) = ω 2

c2
− π 2

4a2 mx
2 +m

y
2( )

		

k1 =
∂k

z

∂ω
ω0

= 1

c 1− π 2c2

4a2ω0
2 mx

2 +m
y
2( )

		

v
ph
=
ω0
k

= c

1− π 2c2

4a2ω 2 mx
2 +m

y
2( )

		
v
gr
= ∂ω
∂k

z ω0

= c 1− π 2c2

4a2ω 2 mx
2 +m

y
2( )

Faster	phase	velocity	

Slower	group	velocity	
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Waveguide	dispersion:	GDD	

•  The	second-order	phase	is	nega1ve	

		

k2 =
∂2k

z

∂ω 2
ω0

= 1

ω c 1− π 2c2

4a2ω0
2 mx

2 +m
y
2( )

− 1

ω c 1− π 2c2

4a2ω0
2 mx

2 +m
y
2( )

		
k2 =

∂2k
z

∂ω 2
ω0

= −
k1
ω

c2

v
g
2 −1

⎛

⎝
⎜

⎞

⎠
⎟ Group	velocity	<	c	

Balancing	material	and	waveguide	dispersion	

•  Mix	of	posi1ve	(material)	and	nega1ve	(waveguide)	GDD	
leads	to	a	zero-dispersion	point	

•  Standard	single-mode	fiber		
						(SMF):	ZDP	~	1500nm	
•  Photonic	crystal	fiber	(PCF):		
				small	core	size	to	push	ZDP	to	
				lower	wavelengths	
	

2.0 2.2 2.4 2.6

-10

10

20GD	(fs/mm)	 Fused	silica	bulk	

Fused	silica	waveguide	
	(2um	radius)	

empty	waveguide	(2um	radius)	


