

FT of a Gaussian

• Starting integral: $\int_{0}^{\infty} e^{-z^{2}} dz = \sqrt{\pi}$ - True even if z is complex

$$f(t) = e^{-t^2/t_0^2} \qquad FT\{f(t)\} = F(\omega) = \int_{-\infty}^{\infty} e^{-t^2/t_0^2} e^{+i\omega t} dt$$

• Complete the square in the exponent...

FT(rect)=sinc and Dirac delta
• Rect(t/t0)
$$rect\left(\frac{t}{t_0}\right) = 1$$
 for $|t| < \frac{t_0}{2}$
 $F(\omega) = \int_{-\infty}^{\infty} rect(t/t_0)e^{+i\omega t} dt = \int_{-t_0/2}^{t_0/2} e^{+i\omega t} dt = \frac{1}{i\omega} (e^{+i\omega t_0/2} - e^{-i\omega t_0/2})$
 $= t_0 \frac{\sin(\omega t_0/2)}{\omega t_0/2} = t_0 \operatorname{sinc}(\omega t_0/2)$
• Dirac delta $\int_{-\infty}^{\infty} \delta(t) dt = 1$
 $- \operatorname{Limit:} \qquad \delta(\omega) = \lim_{t_0 \to \infty} FT \left\{ \operatorname{rect}(t/t_0) \right\} = \lim_{t_0 \to \infty} [t_0 \operatorname{sinc}(\omega t_0/2)]$
 $- \operatorname{At} \omega = 0, \text{ limit is } \infty$
 $- \omega \neq 0, \text{ limit is } 0 \text{ in sense that integral over rapid osc sin() is } 0$
 $- \operatorname{Normalization:} FT \{1\} = 2\pi \delta(\omega) \qquad FT^{-1}\{1\} = \delta(t)$

FI theorems		
Properties of Fouri	er Transforms	
A_1 and A_2 arbitrary constants b and d real nonzero constants	x_0 and ξ_0 real constants k a positive integer	
$g(x) = \int_{-\infty}^{\infty} G(\beta) e^{j2\pi\beta x} d\beta$	$G(\xi) = \int_{-\infty}^{\infty} g(\alpha) e^{-j2\pi\alpha\xi} d\alpha$	
$f(\pm x)$	$F(\pm\xi)$	
$f^*(\pm x)$	$F^*(\mp\xi)$	
$F(\pm x)$	$f(\mp \xi)$	
$F^*(\pm x)$	$f^*(\pm\xi)$	
$f\left(\frac{x}{b}\right)$	$ b F(b\xi)$	scaling
d f(dx)	$F\left(\frac{\xi}{d}\right)$	14 T
$f(x \pm x_0)$	$e^{\pm j2\pi x_0\xi}F(\xi)$	shift
$e^{\pm j2\pi\xi_0 x} f(x)$	$F(\xi \mp \xi_0)$	

FT Theorems

Shift theorem

$$\Im\{f(t-t_0)\} = \exp(+i\omega t_0)F(\omega) \qquad \qquad \Im^{-1}\{F(\omega-\omega_0)\} = \exp(-i\omega_0 t)f(t)$$

 $\mathfrak{I}^{-1}\left\{F(b\omega)\right\} = \frac{1}{|b|}f(t/b)$

Scale theorem

$$\Im\{f(at)\} = \frac{1}{|a|}F(\omega/a)$$

Conjugation

$$\Im\left\{f^{*}(t)\right\} = F^{*}(-\omega)$$

Symmetry properties of Furier Transforms
$$f(x)$$
 $f(x)$ $F(\xi)$ Complex, no symmetryComplex, no symmetryHermitianReal, no symmetryAntihermitianImaginary, no symmetryComplex, evenComplex, evenComplex, evenComplex, evenComplex, oddComplex, evenReal, no symmetryHermitianReal, evenReal, evenReal, oddImaginary, oddImaginary, no symmetryAntihermitianImaginary, oddReal, oddImaginary, oddReal, odd

