10
Harmonic generation with focused beams Fourier transforms
pulse propagation

Harmonic generation with focused Gaussian beams

- $q^{\text {th }}$ harmonic:

$$
\omega_{q}=q \omega_{1} \quad I_{q}(r) \propto I_{1}^{q}(r)
$$

- Spot size is smaller: $w_{q}=w_{1} / \sqrt{q}$
- Rayleigh range is the same:

$$
z_{R q}=\frac{\pi w_{q}{ }^{2}}{\lambda_{q}}=\frac{\pi\left(w_{q} / \sqrt{q}\right)^{2}}{\lambda_{q} / q}=z_{R 1}
$$

- no depletion
- Assume harmonic propagates as a TEM_{00} beam

$$
A_{q}(r, z)=A_{q 0}(z) \frac{1}{1+i \xi_{q}} e^{-\frac{r^{2}}{w_{q 0^{2}}\left(1+i \xi_{q}\right)}} \quad \xi \equiv \frac{z}{z_{R}}
$$

Develop equation for $A_{q}(z)$

- Gaussian beam is a solution for wave equation, so homogeneous part of equation (LHS) is

$$
A_{q 0}(z)\left(2 i k_{q} \frac{\partial}{\partial z}+\nabla_{1}^{2}\right) \frac{1}{1+i \xi_{q}} e^{w_{q 0^{2}}\left(1+i \xi_{q}\right)}+\frac{1}{1+i \xi_{q}} e^{-\frac{r^{2}}{w_{q 0^{2}}\left(1+i \xi_{q}\right)}} \frac{\partial}{\partial z} A_{q 0}(z)
$$

- Simplify wave equation:

$$
\begin{aligned}
& \frac{1}{1+i \xi_{q}} e^{-\frac{r^{2}}{w_{q 0}{ }^{2}\left(1+i \xi_{q}\right)}} \frac{\partial}{\partial z} A_{q 0}(z)=-\frac{\omega_{q}{ }^{2}}{2 i k_{q} \varepsilon_{0} c^{2}} \chi^{(q)}\left(\frac{1}{1+i \xi_{1}}\right)^{q} e^{-\frac{q r^{2}}{w_{0}^{2}\left(1+i \xi_{1}\right)}} A_{1}^{q} e^{i \Delta k z} \\
& \frac{\partial}{\partial z} A_{q 0}(z)=-\frac{\omega_{q}{ }^{2}}{2 i k_{q} \varepsilon_{0} c^{2}} \chi^{(q)} \frac{1+i \xi_{q}}{\left(1+i \xi_{1}\right)^{q}} e^{-\frac{q r^{2}}{w_{0}^{2}\left(1+i \xi_{1}\right)}+\frac{r^{2}}{w_{q 0}{ }^{2}\left(1+i \xi_{q}\right)}} A_{1}^{q} e^{i \Delta k z}
\end{aligned}
$$

Phase matching integral, non-depleted limit

- Both fundamental and harmonics are Gaussian beams with matched Rayleigh ranges
$\frac{\partial}{\mid \partial z} A_{q 0}(z)=-\frac{\omega_{q}{ }^{2}}{2 i k_{q} \varepsilon_{0} c^{2}} \chi^{(q)} \frac{1+i \xi_{q}}{\left(1+i \xi_{1}\right)^{9}} e^{-\frac{q r^{2}}{\omega_{0}{ }^{2}\left(1+i \xi_{1}\right.}{ }^{+}{ }^{\omega_{q 0}{ }^{2}\left(1+i \xi_{q}\right)}} A_{1}^{q} e^{i \Delta k z}$
- Assume $n_{q}=n_{1}$ (e.g. gas) Since

$$
z_{R}\left(\omega_{q}\right)=z_{R}\left(\omega_{1}\right) \quad w_{q 0}^{2}=w_{0}^{2} / q \quad \xi \equiv \frac{z}{z_{R}} \quad \xi_{q}=\xi_{1}
$$

- Equation for $\mathrm{Aq}(\mathrm{z})$ simplifies

$$
\rightarrow \frac{\partial}{\partial z} A_{q 0}(z)=i \frac{\omega_{q}}{2 n_{q} \varepsilon_{0} c} \chi^{(q)} \frac{1}{(1+i \xi)^{q-1}} A_{1}^{q} e^{i \Delta k z}
$$

New phase matching integral

- We start with equation for A_{q} :

$$
\frac{\partial}{\partial z} A_{q 0}(z)=i \frac{\omega_{q}}{2 n_{q} \varepsilon_{0} c} \chi^{(q)} \frac{1}{\left(1+i z / z_{R}\right)^{q-1}} A_{1}^{q} e^{i \Delta k z}
$$

- Integrate this directly

$$
\begin{aligned}
& \rightarrow A_{q 0}(z)=i \frac{\omega_{q}}{2 n_{q} \varepsilon_{0} c} \chi^{(q)} A_{1}^{q} J_{q}(z) \\
& J_{q}(z)=\int_{z_{1}}^{q_{2}} \frac{1}{\left(1+i z^{\prime} / z_{R}\right)^{q-1}} e^{i \Delta k z^{\prime}} d z^{\prime}
\end{aligned}
$$

Harmonic generation in the tight focusing limit

- Here we integrate over all z :

$$
J_{q}\left(\Delta k, z_{R}\right)=\left\{\begin{array}{cc}
0 & \Delta k<0 \\
z_{R} \frac{2 \pi}{(q-2)!}\left(\Delta k z_{R}\right)^{q-2} e^{-\Delta k z_{R}} & \Delta k \geq 0
\end{array}\right.
$$

- For $\boldsymbol{q}>\mathbf{2}$, zero yield unless $\Delta \mathrm{k}>0$

Small thickness limit

$$
J_{q}(z)=\int_{-L / 2}^{L / 2} \frac{1}{\left(1+i z^{\prime} / z_{R}\right)^{q-1}} e^{i \Delta k z^{\prime}} d z^{\prime}
$$

The fraction in the integrand is connected to the Gouy phase:

$$
\begin{aligned}
& \frac{1}{1+i \xi}=\frac{1}{1+i z / z_{R}}=\frac{w_{0}}{w(z)} e^{-i \eta(z)} \quad \eta(z)=\arctan \left(\frac{z}{z_{R}}\right) \\
& \frac{1}{\left(1+i z^{\prime} / z_{R}\right)^{q-1}}=\frac{1}{(1+i \xi)^{q-1}}=\left(\frac{w_{0}}{w(z)}\right)^{q-1} e^{-i(q-1) \eta(z)} \approx\left(\frac{w_{0}}{w(z)}\right)^{q-1} e^{-i(q-1) z / z_{R}} \\
& J_{q}(z)=\int_{-L / 2}^{L / 2}\left(\frac{w_{0}}{w(z)}\right)^{q-1} e^{i\left(\Delta k-(q-1) / z_{R}\right) z^{\prime}} d z^{\prime} \\
& \text { This shows where the optimum phase mismatch should be. } \\
& \text { This limit is related to HG in waveguides, since the WG phase scales like z/zR }
\end{aligned}
$$

Measuring localization with THG

- Z-scan of fused silica interface leads to observed THG through partial phase matching

No THG from bulk THG emerges with spatial chirp

Axial FWHM = confocal parameter of fundamental in air

SSTF reduces FWHM consistent with beam aspect ratio
E. Block
O. Masihzadeh
C. Durfee
J. Squier

THG microscopy

- Label/dye-free signal. Witte et al PNAS v108, 59702011

THG Imaging of Live Brain Tissue

[B] Axons and dentrites have very high lipid concentrations, small diameters ($0.3-2 \mu \mathrm{~m}$)

- Laser focal volume >> diameter : very good THG signal
[C] Neuron cell bodies (somata) contain organelles, much smaller diameters (20 100 nm)
- THG signal not good
[D] Result: "shadow contrast" : neural tissue THG image shows dark cell bodies - and illuminated axons / dentrites

Fourier transforms: t- ω domain

$$
\begin{aligned}
& F(\omega)=\int_{-\infty}^{\infty} f(t) e^{+i \omega t} d t=F T\{f(t)\} \\
& f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{-i \omega t} d t=F T^{-1}\{F(\omega)\}
\end{aligned}
$$

- In EM, our signals are complex fields
- $1 / 2 \pi$ factor is lumped into inverse transform
- ω is our frequency variable, not v. This affects the normalization constants
- Note signs of exponents: this is tied to our $\exp (-i \omega t)$ convention
- Techniques
- Analytic: apply transform IDs and theorems to decompose a transform into its parts
- Analytic in Mathematica: can do some FTs but not always expressed in recognizable way
- Graphical: after identifying components of a transform, sketch the anticipated result
- Numerical: FFT for calculating complicated or realistic cases for modeling/data analysis

FT of a Gaussian

- Starting integral: $\int^{\infty} e^{-z^{2}} d z=\sqrt{\pi}$
- True even if z is complex

$$
f(t)=e^{-t^{2} \mu_{0}^{2}} \quad F T\{f(t)\}=F(\omega)=\int_{-\infty}^{\infty} e^{-t^{2} \mu_{0}^{2}} e^{+i \omega t} d t
$$

- Complete the square in the exponent...

FT of a Gaussian is a Gaussian

- Starting integral: $\int^{\infty} e^{-z^{2}} d z=\sqrt{\pi}$
- True even if z is complex

$$
f(t)=e^{-t^{2} t_{0}^{2}} \quad F T\{f(t)\}=F(\omega)=\int_{-\infty}^{\infty} e^{-t^{2} t_{0}^{2}} e^{+i \omega t} d t
$$

- Complete the square in the exponent

$$
\begin{aligned}
& -\frac{t^{2}}{t_{0}^{2}}+i \omega t=-\frac{1}{t_{0}^{2}}\left(t^{2}-i \omega t t_{0}^{2}\right)=-\frac{1}{t_{0}^{2}}\left(\left(t-\frac{i}{2} \omega t_{0}^{2}\right)^{2}+\frac{1}{4} \omega^{2} t_{0}^{4}\right) \\
& =-\frac{1}{t_{0}^{2}}\left(t-\frac{i}{2} \omega t_{0}^{2}\right)^{2}-\frac{1}{4} \omega^{2} t_{0}^{2} \\
& - \text { Change variables: } \quad z=\frac{1}{t_{0}}\left(t-\frac{i}{2} \omega t_{0}^{2}\right)
\end{aligned}
$$

$F(\omega)=\int_{-\infty}^{\infty} e^{-t^{2} \mu_{0}^{2}} e^{+i \omega t} d t=t_{0} e^{-\frac{1}{4} \omega^{2} t_{0}} \int_{-\infty}^{\infty} e^{-z^{2}} d z=\sqrt{\pi} t_{0} e^{-\frac{1}{4} \omega^{2} t_{0}^{2}}$

Time-bandwidth product

- "uncertainty principle" comes from FT relations
$F T\left(e^{-t^{2} / t_{0}^{2}}\right) \rightarrow t_{0} e^{-\frac{1}{4} \omega^{2} t_{0}^{2}}$
- Pulse duration: t_{0}
- Spectral width (bandwidth): $\delta \omega=2 / \mathrm{t}_{0}$
- Time-bandwidth product: $\mathrm{t}_{0} \delta \omega=2$
- This relation depends on how widths are defined
- Here we've been using 1/e half width in the field
- For FWHM in intensity: $E(t)=E_{0} e^{-2 \ln 2 t^{\prime} / \tau^{2}} \rightarrow I(t) \propto e^{-4 \ln 2 t^{\prime} / \tau^{2}}$
$\tau=t_{0} \sqrt{2 \ln 2} \quad \Delta \omega=\delta \omega \sqrt{2 \ln 2}$
$t_{0} \delta \omega=2=\frac{\tau \Delta \omega}{2 \ln 2} \rightarrow \tau \Delta \omega=4 \ln 2 \approx 2.77 \quad \tau \Delta v=\frac{4 \ln 2}{2 \pi} \approx 0.44$

Bandwidth for transform-limited pulses

- The bandwidth in frequency space is independent of the central frequency

The shortest pulse is limited to $1 / 2$ of an optical cycle

FT(rect)=sinc and Dirac delta

- $\operatorname{Rect}(\mathrm{t} / \mathrm{tO}) \operatorname{rect}\left(\frac{t}{t_{0}}\right)=1$ for $|t|<\frac{t_{0}}{2}$

$$
\begin{aligned}
F(\omega) & =\int_{-\infty}^{\infty} \operatorname{rect}\left(t / t_{0}\right) e^{+i \omega t} d t=\int_{-t_{0} / 2}^{t_{0} / 2} e^{+i \omega t} d t=\frac{1}{i \omega}\left(e^{+i \omega t_{0} / 2}-e^{-i \omega t_{0} / 2}\right) \\
& =t_{0} \frac{\sin \left(\omega t_{0} / 2\right)}{\omega t_{0} / 2}=t_{0} \operatorname{sinc}\left(\omega t_{0} / 2\right)
\end{aligned}
$$

- Dirac delta $\int_{-\infty}^{\infty} \delta(t) d t=1$
- Limit: $\quad \delta(\omega)=\lim _{t_{0} \rightarrow \infty} F T\left\{\operatorname{rect}\left(t / t_{0}\right)\right\}=\lim _{t_{0} \rightarrow \infty}\left[t_{0} \operatorname{sinc}\left(\omega t_{0} / 2\right)\right]$
- At $\omega=0$, limit is ∞
$-\omega \neq 0$, limit is 0 in sense that integral over rapid osc $\sin ()$ is 0
- Normalization:

$$
F T\{1\}=2 \pi \delta(\omega) \quad F T^{-1}\{1\}=\delta(t)
$$

FT theorems

Properties of Fourier Transforms

b and d real nonzero constants
k a positive integer

$g(x)=\int_{-\infty}^{\infty} G(\beta) e^{j 2 \pi \beta x} d \beta$	$G(\xi)=\int_{-\infty}^{\infty} g(\alpha) e^{-j 2 \pi \alpha \xi} d \alpha$
$f(\pm x)$	$F(\pm \xi)$
$f^{*}(\pm x)$	$F^{*}(\mp \xi)$
$F(\pm x)$	$f(\mp \xi)$
$F^{*}(\pm x)$	$f^{*}(\pm \xi)$
$f^{2}\left(\frac{x}{b}\right)$	$\|b\| F(b \xi)$
$\|d\| f(d x)$	$F\left(\frac{\xi}{d}\right)$
$f^{ \pm}\left(x \pm x_{0}\right)$	$e^{ \pm j 2 \pi x_{0} \xi} F(\xi)$
$e^{ \pm j 2 \pi \xi_{0} x} f(x)$	$F\left(\xi \mp \xi_{0}\right)$

FT Theorems

Shift theorem

$$
\mathfrak{I}\left\{f\left(t-t_{0}\right)\right\}=\exp \left(+i \omega t_{0}\right) F(\omega) \quad \mathfrak{J}^{-1}\left\{F\left(\omega-\omega_{0}\right)\right\}=\exp \left(-i \omega_{0} t\right) f(t)
$$

Scale theorem

$$
\mathfrak{J}\{f(a t)\}=\frac{1}{|a|} F(\omega / a) \quad \mathfrak{J}^{-1}\{F(b \omega)\}=\frac{1}{|b|} f(t / b)
$$

Conjugation

$$
\mathfrak{J}\left\{f^{*}(t)\right\}=F *(-\omega)
$$

Symmetry properties of FT

Symmetry Properties of Fourier Transforms	
$f(x)$	$F(\xi)$
Complex, no symmetry	Complex, no symmetry
Hermitian	Real, no symmetry
Antihermitian	Imaginary, no symmetry
Complex, even	Complex, even
Complex, odd	Complex, odd
Real, no symmetry	Hermitian
Real, even	Real, even
Real, odd	Imaginary, odd
Imaginary, no symmetry	Antihermitian
Imaginary, even	Imaginary, even
Imaginary, odd	Real, odd

Representing an optical pulse in t and ω spaces

- Two ways to represent the field of a pulse:
- Time domain
$E(t)=A(\mathbf{r}, t) \exp \left[i\left(\mathbf{k} \cdot \mathbf{r}-i \omega_{0} t+\phi(t)\right)\right]+c . c$.
- Frequency domain
$E(\omega)=F T\{E(t)\}=A\left(r, \omega-\omega_{0}\right) e^{i\left(\mathbf{k} \cdot \mathbf{r}+\varphi\left(\omega-\omega_{0}\right)\right)}+A^{*}\left(r, \omega+\omega_{0}\right) e^{-i\left(\mathbf{k} \cdot \mathbf{r} \varphi\left(\omega-\omega_{0}\right)\right)}$
- Both positive and negative frequency components: usually neglect negative side in linear optics
$E(\omega) \approx A\left(r, \omega-\omega_{0}\right) \exp \left[i\left(\mathbf{k} \cdot \mathbf{r}+\varphi\left(\omega-\omega_{0}\right)\right)\right]$
- Both t and ω representations contain the same information, same total energy.
- Phase functions not the same in both domains
- Temporal phase: $\phi(t)$
- Spectral phase: $\varphi(\omega)$

Taylor expansion of spectral phase

- To simplify the phase, consider the first two terms

$$
\varphi(\omega)=\varphi_{0}+\varphi_{1} \frac{\omega-\omega_{0}}{1!}+\varphi_{2} \frac{\left(\omega-\omega_{0}\right)^{2}}{2!}+\ldots
$$

where $\quad \varphi_{0}=\varphi\left(\omega_{0}\right) \quad$ is the "absolute phase"

$$
\varphi_{1}=\left.\frac{d \varphi}{d \omega}\right|_{\omega=\omega_{0}} \quad \text { is the group delay. } \quad \tau_{g}(\omega)=\frac{d \varphi}{d \omega}
$$

$$
\varphi_{2}=\left.\frac{d^{2} \varphi}{d \omega^{2}}\right|_{\omega=\omega_{0}} \quad \text { is called the "group-delay dispersion." }
$$

- In real situations, we sometimes have to include higher order phase, $3^{\text {rd }}, 4^{\text {th }} \ldots$

Taylor expansion of temporal phase

- Here we expand around $t=0$, i.e. the center of the pulse

$$
\phi(t)=\phi_{0}+\phi_{1} \frac{t}{1!}+\phi_{2} \frac{t^{2}}{2!}+\ldots
$$

where $\quad \phi_{0}=\phi(0) \quad$ is the "carrier-envelope" or "absolute phase"

$$
\begin{aligned}
& \phi_{1}=\left.\frac{d \phi}{d t}\right|_{t=0} \quad \text { the instantaneous frequency is } \omega_{\text {inst }}(t)=-\frac{d \phi}{d t} \\
& \phi_{2}=\left.\frac{d^{2} \phi}{d t^{2}}\right|_{t=0} \quad \text { is called the "temporal chirp." }
\end{aligned}
$$

- In real situations, we sometimes have to include higher order phase, $3^{\text {rd }}, 4^{\text {th }} \ldots$

Intensity and phase of a Gaussian

- The Gaussian is real, so its phase is zero in both domains.

The spectral phase of a time-shifted pulse

Recall the Shift Theorem:

$$
F T\left\{f\left(t-t_{0}\right)\right\}=\exp \left(+i \omega t_{0}\right) F(\omega)
$$

Linear spectral phase: $\phi(\omega)=a \omega$.

By the Shift Theorem, a linear spectral phase is just a delay in time.
The peaks of the spectral components line up at a later time.

Zero ${ }^{\text {th }}$-order phase: the absolute phase

- The absolute phase is the same in both the time and frequency domains.

$$
f(t) \exp \left(i \phi_{0}\right) \rightarrow F(\omega) \exp \left(i \phi_{0}\right)
$$

- An absolute phase of $\pi / 2$ will turn a cosine carrier wave into a sine.
- It' s usually irrelevant, unless the pulse is only a cycle or so long.

Notice that the two four-cycle pulses look alike, but the three singlecycle pulses are all quite different.

Slide modified from R. Trebino

First-order phase in frequency: a shift in time

By the Fourier-Transform Shift Theorem,

$F(\omega) \exp \left(i \omega \varphi_{1}\right) \rightarrow f\left(t-\varphi_{1}\right)$

$\varphi_{1}=-20 f s$
-

Note that φ_{1} does not affect the instantaneous frequency, but the group delay $=$ ϕ_{1}.

First-order phase in time: a frequency shift

- By the Inverse-Fourier-Transform Shift Theorem,

$$
f(t) \exp \left(-i \phi_{1} t\right) \rightarrow F\left(\omega-\phi_{1}\right)
$$

Note that ϕ_{1} does not affect the group delay, but it does affect the instantaneous frequency.

Second-order phase: the linearly chirped pulse

- A pulse can have a frequency that varies in time.

This pulse increases its frequency linearly in time (from red to blue).

In analogy to bird sounds, this pulse is called a "chirped" pulse.

The linearly chirped Gaussian pulse

- We can write a linearly chirped Gaussian pulse mathematically as:

$$
\begin{aligned}
& E(t)=A(t) \exp [i \phi(t)] \\
&=E_{0} \exp \left[-\left(t / \tau_{G}\right)^{2}\right] \exp \left[-i\left(\omega_{0} t+\beta t^{2}\right)\right] \\
& \uparrow_{\begin{array}{l}
\text { Gaussian } \\
\text { amplitude }
\end{array}}^{\text {Carrier }} \uparrow^{\text {wave }} \uparrow_{\text {Chirp }}
\end{aligned}
$$

Note that for $\beta>0$, when $t<0$, the two terms partially cancel, so the phase changes slowly with time (so the frequency is low). And when $t>0$, the terms add, and the phase changes more rapidly (so the frequency is larger).

The instantaneous frequency
vs. time for a chirped pulse

A chirped pulse has:

$$
E(t) \propto \exp \left[i\left(-\omega_{0} t+\phi(t)\right)\right]
$$

where:

$$
\phi(t)=-\beta t^{2} \quad \text { (note the sign change) }
$$

The instantaneous frequency is:

$$
\omega_{\text {inst }}(t) \equiv \omega_{0}-d \phi / d t
$$

which is:

$$
\omega_{\text {inst }}(t)=\omega_{0}+2 \beta t
$$

So the frequency increases linearly with time. This is positive chirp.

The negatively chirped pulse

- We have been considering a pulse whose frequency increases
- linearly with time: a positively chirped pulse.
- One can also have a negatively
- chirped (Gaussian) pulse, whos
- instantaneous frequency
- decreases with time.
- We simply allow β to be negati
- in the expression for the pulse:

$$
\begin{aligned}
E(t) & =E_{0} \exp \left[-\left(t / \tau_{G}\right)^{2}\right] \exp \left[-i\left(\omega_{0} t+\beta t^{2}\right)\right] \\
& =E_{0} \exp \left[-\left(t / \tau_{G}\right)^{2}\right] \exp \left[-i\left(\omega_{0} t-|\beta| t^{2}\right)\right]
\end{aligned}
$$

- And the instantaneous frequency will decrease with time:

$$
\omega_{\text {inst }}(t)=\omega_{0}+2 \beta t=\omega_{0}-2|\beta| t
$$

The Fourier transform of a chirped pulse

- Writing a linearly chirped Gaussian pu

$\mathscr{E}(t) \propto E_{0} \exp \left[-\alpha t^{2}\right] \exp \left[-i\left(\omega_{0} t+\beta t^{2}\right)\right]+c . c$ where $\alpha \propto 1 / \Delta t^{2}$
- or:
$\mathscr{E}(t) \propto E_{0} \exp \left[-(\alpha+i \beta) t^{2}\right] \exp \left[-i \omega_{0} t\right]+c . c$.
- Fourier-Transforming yields:
neglecting the negative-frequency

$$
\tilde{E}(\omega) \propto E_{0} \exp \left[-\frac{1 / 4}{\alpha+i \beta}\left(\omega-\omega_{0}\right)^{2}\right]
$$

- Rationalizing the denominator and separating the real and imag parts:
$\tilde{E}(\omega) \propto E_{0} \exp \left[-\frac{\alpha / 4}{\alpha^{2}+\beta^{2}}\left(\omega-\omega_{0}\right)^{2}\right] \exp \left[+i \frac{\beta / 4}{\alpha^{2}+\beta^{2}}\left(\omega-\omega_{0}\right)^{2}\right]$ Slide modified from R. Trebino

$2^{\text {nd }}$-order phase: positive linear chirp

-Numerical example: Gaussian-intensity pulse w/ positive linear chirp, $\phi_{2}=-0.032 \mathrm{rad} / \mathrm{fs}^{2}$ or $\varphi_{2}=290 \mathrm{rad} \mathrm{fs}^{2}$.

Here the quadratic phase has stretched what would have been a 3 -fs pulse (given the spectrum) to a 13.9 -fs one. Slide modified from R. Trebino

2nd-order phase: negative linear chirp

-Numerical example: Gaussian-intensity pulse w/ negative linear chirp, $\phi_{2}=+0.032 \mathrm{rad} / \mathrm{fs}^{2}$ or $\varphi_{2}=-290 \mathrm{rad} \mathrm{fs}^{2}$.

As with positive chirp, the quadratic phase has stretched what would have been a 3 -fs pulse (given the spectrum) to a 13.9 -fs one.

Slide modified from R. Trebino

Group delay vs spectral phase

- The group delay gives the arrival time of the different frequency

$$
\tau_{g}(\omega)=\frac{d \varphi}{d \omega}
$$ components

$$
\varphi(\omega)=\varphi_{0}+\varphi_{1} \frac{\omega-\omega_{0}}{1!}+\varphi_{2} \frac{\left(\omega-\omega_{0}\right)^{2}}{2!}+\ldots
$$

- So a positive $2^{\text {nd }}$ order phase gives a positive slope to the group delay:

Not usually
important:

- phase constant
- group delay shift

Use group delay variation to visualize chirp.

$3^{\text {rd }}$-order spectral phase: quadratic chirp

-The red and blue colors coincide in time and interfere.

E-field vs. time

Spectrum and spectral phase

Trailing satellite pulses in time indicate positive spectral cubic phase, and leading ones indicate negative spectral cubic phase.

Pulse propagation

-What happens to a pulse as it propagates through a medium?
-Always model (linear) propagation in the frequency domain. Also, you must know the entire field (i.e., the intensity and phase) to do so.

$$
\tilde{E}_{\text {out }}(\omega)=\tilde{E}_{\text {in }}(\omega) \exp \left[-\frac{\alpha(\omega)}{2} L\right] \exp [i k(\omega) L]
$$

In the time domain, propagation is a convolution-much harder.
Slide modified from R. Trebino

Pulse propagation

 (continued)$$
\tilde{E}_{\text {in }}(\omega)^{\circ} \bumpeq \because \square \square \tilde{E}_{\text {out }}(\omega)
$$

Rewriting this expression using $k=n(\omega) \omega / c$:

$$
\tilde{E}_{\text {out }}(\omega)=\tilde{E}_{\text {in }}(\omega) \exp [-\alpha(\omega) L / 2] \exp [i \omega n(\omega) L / c]
$$

Separating out the spectrum and spectral phase:

$$
\begin{aligned}
S_{\text {out }}(\omega) & =S_{\text {in }}(\omega) \exp [-\alpha(\omega) L] \\
\varphi_{\text {out }}(\omega) & =\varphi_{\text {in }}(\omega)+n(\omega) \frac{\omega}{c} L
\end{aligned}
$$

Absorption (or gain) modifies the spectral amplitude,
Refractive index modifies the spectral phase

Pulse propagation: t / ω domains

- Dispersion in a system will stretch a short pulse:

- Linear propagation is best represented in ω space:

$$
E_{\text {out }}(\omega)=A\left(\omega-\omega_{0}\right) e^{i \phi(\omega)}
$$

Spectral phase

$$
\phi(\omega)=k L=\frac{\omega}{c} n(\omega) L
$$

Propagation of a Gaussian pulse

- Start with pulse in t-domain

$$
E(z=0, t)=A_{0} e^{-t^{2} t_{0} t_{0}} e^{-i \omega_{0} t}
$$

- FT to frequency space:

$$
E(z=0, \omega)=F T\{E(t)\}=A_{0} t_{0} e^{-\frac{1}{4}\left(\omega-\omega_{0}\right)^{2} t_{0}^{2}}
$$

- Apply phase shift that results from propagation:

$$
\begin{aligned}
E(z, \omega) & =A_{0} t_{0} e^{-\frac{1}{4}\left(\omega-\omega_{0}\right)^{2} t_{0}^{2}} e^{i \frac{\omega_{n}}{c} n(\omega) z} \approx A_{0} t_{0} e^{-\frac{1}{4}\left(\omega-\omega_{0}\right)^{2} t_{0}^{2}} e^{i\left(\varphi_{0}+\left(\omega-\omega_{0}\right) \varphi_{1}+\frac{1}{2}\left(\omega-\omega_{0}\right)^{2} \varphi_{2}\right)} \\
& =A_{0} t_{0} e^{i \varphi_{0}} \exp \left[i\left(\omega-\omega_{0}\right) \varphi_{1}\right] \exp \left[-\left(\omega-\omega_{0}\right)^{2}\left(\frac{t_{0}^{2}}{4}-i \frac{1}{2} \varphi_{2}\right)\right] \\
& \text { Constant phase Group delay shift } \quad \text { Chirp }
\end{aligned}
$$

- Note that the phase terms are typically proportional to z
- Next: inverse transform to t-domain.

Propagated pulse in time domain

- In the time-domain, pulse can be written
$E(z, t)=A_{0} t_{0} \frac{1}{2 \pi} \int e^{i \varphi_{0}} \exp \left[i\left(\omega-\omega_{0}\right) \varphi_{1}\right] \exp \left[-\left(\omega-\omega_{0}\right)^{2}\left(\frac{t_{0}^{2}}{4}-i \frac{1}{2} \varphi_{2}\right)\right] e^{-i \omega t} d \omega$
- We will use the shift theorem for carrier and group delay, so consider this integral:

$$
f(t)=\frac{1}{2 \pi} \int \exp \left[-\delta \omega^{2}\left(\frac{t_{0}^{2}}{4}-i \frac{1}{2} \varphi_{2}\right)\right] e^{-i \delta \omega t} d \delta \omega
$$

- So that

$$
E(z, t)=A_{0} t_{0} e^{i \varphi_{0}-i \omega_{0} t} f\left(t-\varphi_{1}\right)
$$

- Note that the group delay is just the transit time through

$$
\varphi_{1}=\tau_{g}\left(\omega_{0}\right)=\left.\frac{d \varphi}{d \omega}\right|_{\omega=\omega_{0}}=\left.\frac{d k}{d \omega}\right|_{\omega=\omega_{0}} \cdot L=\frac{L}{\mathrm{v}_{g}}
$$

Chirped output pulse

- We're doing the FT of a complex Gaussian

$$
\begin{aligned}
& f(t)=\frac{1}{2 \pi} \int \exp \left[-\delta \omega^{2}\left(\frac{t_{0}^{2}}{4}-i \frac{1}{2} \varphi_{2}\right)\right] e^{-i \delta \omega t} d \delta \omega \\
& F T^{-1}\left\{\exp \left(-T^{2} \omega^{2} / 4\right)\right\}=\frac{1}{\sqrt{\pi T^{2}}} \exp \left(-t^{2} / T^{2}\right) \quad \begin{array}{r}
T^{2}=t_{0}{ }^{2}-2 i \varphi_{2} \\
f(t)=\frac{1}{\sqrt{\pi\left(t_{0}^{2}-2 i \varphi_{2}\right)}} \exp \left(-\frac{t^{2}}{t_{0}^{2}-2 i \varphi_{2}}\right) \quad \\
\sim \text { q(z) for Gaussian ter be }
\end{array} \\
& \frac{1}{t_{0}^{2}-2 i \varphi_{2}}=\frac{t_{0}^{2}+2 i \varphi_{2}}{t_{0}^{4}+4 \varphi_{2}^{2}}=\frac{1+\frac{2 i \varphi_{2}}{t_{0}^{2}}}{t_{0}^{2}\left(1+\left(\frac{2 \varphi_{2}}{t_{0}^{2}}\right)^{2}\right)}=\frac{1+\frac{2 i \varphi_{2}}{t_{0}^{2}}}{\tau^{2}(z)}
\end{aligned}
$$

Chirped output pulse

- The pulse duration and chirp parameter vary with z

$$
\begin{aligned}
& \text { z-dependent pulse duration } \\
& \tau(z)=t_{0} \sqrt{1+\left(\frac{2 \varphi_{2}}{t_{0}^{2}}\right)^{2}}=t_{0} \sqrt{1+\left(\frac{2 k_{2}}{t_{0}^{2}} z\right)^{2}} \\
& \varphi_{2}(z)=\left.\frac{d^{2} \varphi}{d \omega^{2}}\right|_{\omega=\omega_{0}}=\left.z \frac{d^{2} k}{d \omega^{2}}\right|_{\omega=\omega_{0}}=k_{2} z \quad \quad \text {-dependent chirp param } \\
& f(t)=\frac{1}{\sqrt{\pi\left(t_{0}^{2}-2 i \varphi_{2}\right)}} \exp \left(-\frac{t^{2}}{\tau^{2}(z)}\right) \exp \left(-i \beta t^{2}\right)
\end{aligned}
$$

- This dispersion dependence is just like a Gaussian beam that focuses and diverges.

Final form of $E(z, t)$

- Leading factor:

$$
\begin{aligned}
& f(t)=\frac{1}{\sqrt{\pi\left(t_{0}^{2}-2 i \varphi_{2}\right)}} \exp \left(-\frac{t^{2}}{\tau^{2}(z)}\right) \exp \left(-i \beta t^{2}\right) \quad \tau(z)=t_{0} \sqrt{1+\left(\frac{2 \varphi_{2}}{t_{0}^{2}}\right)^{2}} \\
& \begin{aligned}
& \sqrt{t_{0}{ }^{2}-2 i \varphi_{2}} \sqrt{\frac{1+\frac{2 i \varphi_{2}}{t_{0}{ }^{2}}}{\tau^{2}(z)}}=\frac{1}{\tau(z)} \sqrt{\left(1+\frac{4 \varphi_{2}{ }^{2}}{t_{0}^{4}}\right)^{1 / 2} \exp \left[i \arctan \left(\frac{2 \varphi_{2}}{t_{0}{ }^{2}}\right)\right]} \\
&=\frac{1}{t_{0}\left(1+\frac{4 \varphi_{2}{ }^{2}}{t_{0}{ }^{1 / 4}}\right.} \exp \left[\frac{i}{2} \arctan \left(\frac{2 \varphi_{2}}{t_{0}{ }^{2}}\right)\right] \\
& f(t)=\frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{t_{0} \tau(z)}} \exp \left[\frac{i}{2} \arctan \left(\frac{2 \varphi_{2}}{t_{0}^{2}}\right)\right] \exp \left(-\frac{t^{2}}{\tau^{2}(z)}\right) \exp \left(-i \beta t^{2}\right)
\end{aligned}
\end{aligned}
$$

Final form of $\mathrm{E}(\mathrm{z}, \mathrm{t})$

- Complete form of Gaussian pulse propagation
$E(z, t)=\frac{A_{0}}{\sqrt{\pi}} \frac{1}{\sqrt{t_{0} \tau(z)}} e^{-i \omega_{0} t+i \varphi_{0}} \mathrm{e}^{\frac{i}{2} \arctan \left(\frac{2 \varphi_{2}}{t_{0}}\right)} \exp \left(-\frac{\left(t-\varphi_{1}\right)^{2}}{\tau^{2}(z)}-i \beta\left(t-\varphi_{1}\right)^{2}\right)$
- Intensity follows 1 /pulse duration
- z-dependent phase term similar to the spatial Gouy phase
- Pulse envelope moves at the group velocity
- Dispersion length: characteristic distance for stretching:
$\tau(z)=t_{0} \sqrt{1+\left(\frac{2 k_{2}}{t_{0}{ }^{2}} z\right)^{2}} \quad L_{d}=\frac{t_{0}{ }^{2}}{2 k_{2}} \quad \tau$ increases by sqrt(2) over distance L_{d}

Modal dispersion

- Confinement of the propagating mode gives a geometric contribution to the dispersion
- Example: square waveguide
$\nabla^{2} E+n^{2} \frac{\omega^{2}}{c^{2}} E=0$
$\rightarrow n^{2} \frac{\omega^{2}}{c^{2}}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}$

- Find transverse modes: $E(x, y, z)=E_{0} \sin \left(k_{x} x\right) \sin \left(k_{y} y\right) e^{i k_{z} z}$

$$
k_{x} \cdot 2 a=m_{x} \pi \quad k_{x}=\frac{m_{x} \pi}{2 a} \quad k_{y}=\frac{m_{y} \pi}{2 a} \quad \text { Indices } \geq 1
$$

$\rightarrow k_{z}(\omega)=\sqrt{n^{2} \frac{\omega^{2}}{c^{2}}-k_{x}^{2}-k_{y}^{2}}=\sqrt{n^{2} \frac{\omega^{2}}{c^{2}}-\frac{\pi^{2}}{4 a^{2}}\left(m_{x}^{2}+m_{y}^{2}\right)} \quad \begin{aligned} & \text { Dispersion depends } \\ & \text { on mode }\end{aligned}$

Modal dispersion affects phase and group velocity

- Group delay dispersion has a geometric contribution
- Consider simple case: vacuum-filled hollow waveguide

$$
k_{z}(\omega)=\sqrt{\frac{\omega^{2}}{c^{2}}-\frac{\pi^{2}}{4 a^{2}}\left(m_{x}^{2}+m_{y}^{2}\right)}
$$

$$
v_{p h}=\frac{\omega_{0}}{k}=\frac{c}{\sqrt{1-\frac{\pi^{2} c^{2}}{4 a^{2} \omega^{2}}\left(m_{x}^{2}+m_{y}^{2}\right)}}
$$

Faster phase velocity

$$
k_{1}=\left.\frac{\partial k_{z}}{\partial \omega}\right|_{\omega_{0}}=\frac{1}{c \sqrt{1-\frac{\pi^{2} c^{2}}{4 a^{2} \omega_{0}^{2}}\left(m_{x}^{2}+m_{y}^{2}\right)}} \quad v_{g r}=\left.\frac{\partial \omega}{\partial k_{z}}\right|_{\omega_{0}}=c \sqrt{1-\frac{\pi^{2} c^{2}}{4 a^{2} \omega^{2}}\left(m_{x}^{2}+m_{y}^{2}\right)}
$$

Waveguide dispersion: GDD

- The second-order phase is negative

$$
\begin{aligned}
& k_{2}=\left.\frac{\partial^{2} k_{z}}{\partial \omega^{2}}\right|_{\omega_{0}}=\frac{1}{\omega c \sqrt{1-\frac{\pi^{2} c^{2}}{4 a^{2} \omega_{0}^{2}}\left(m_{x}^{2}+m_{y}^{2}\right)}}-\frac{1}{\omega c \sqrt{1-\frac{\pi^{2} c^{2}}{4 a^{2} \omega_{0}^{2}}\left(m_{x}^{2}+m_{y}^{2}\right)}} \\
& k_{2}=\left.\frac{\partial^{2} k_{z}}{\partial \omega^{2}}\right|_{\omega_{0}}=-\frac{k_{1}}{\omega}\left(\frac{c^{2}}{v_{g}{ }^{2}}-1\right) \quad \text { Group velocity }<c
\end{aligned}
$$

Balancing material and waveguide dispersion

- Mix of positive (material) and negative (waveguide) GDD leads to a zero-dispersion point

- Standard single-mode fiber (SMF): ZDP ~ 1500nm
- Photonic crystal fiber (PCF): small core size to push ZDP to lower wavelengths

