
MATH348-Advanced Engineering Mathematics Ad Hoc Homework One

Differential Equations

Text: 12.3, 12.5 Lecture Notes: 13-15 Lecture Slides: 6

Quote of Ad Hoc Homework One

Don’t believe the florist when he tells you the roses are free.

Ween : Roses are Free (1994)

1. ODE Review

When solving the linear wave equation, heat equation and Poisson’s partial differential equation (PDE), on compact domains of Rn

separation of variables is the typical method. When using separation of variables one trades a PDE for a class of ordinary differential

equations (ODE) that manifest a set of orthogonal functions that can be used to represent the solution to the original PDE. For most of

our work we will concentrate on,

y′′ + λy = 0, λ ∈ R, x ∈ (0, L).(1)

1.1. General Solution to the ODE. Justify that the following functions solve the previous ODE for particular values of λ and arbitrary

constants ci ∈ R for i = 1, 2, 3, 4, 5, 6.1

Case Function 1 Function 2

λ > 0 y(x) = c1 cos(
√
λx) y(x) = c2 sin(

√
λx)

λ < 0 y(x) = c3 cosh(
p
|λ|x) y(x) = c4 sinh(

p
|λ|x)

λ = 0 y(x) = c5 y(x) = c6x

2. BVP Overview

Boundary value problems (BVP) typically arise within the context of PDE, which are equations modelling the evolution of a quantity in

both space and time. There are important general results for BVP, which are set within the context of Sturm-Liouville problems.2 What

can be efficiently done by hand tends to be limited. The problem, in Cartesian coordinates, is to find all solutions to,

y′′ + λy = 0, λ ∈ R, x ∈ (0, L),(2)

which also satisfy,

l1y(0) + l2y
′(0) = 0,(3)

r1y(L) + r2y
′(L) = 0.(4)

This problem is intractable, by hand, for general values of l1, l2, r1, r2. However, the following set of values,

l1 l2 r1 r2

Case I 1 0 1 0

Case II 0 1 0 1

Case III 1 0 0 1

Case IV 0 1 1 0

lead to BVP that can be solved by hand.

2.1. Application of Boundary Conditions. We have seen Case I in long homework 2 and Case II in long homework 3. Now we

concentrate on Case III and Case IV. Before you begin you may want to collect the previous results so that you have them all on one page.

2.1.1. Case III. From the previous table of functions, first show that y(0) = 0 implies that c1 = c3 = c5 = 0. Next show that y′(L) = 0

implies that c4 = c6 = 0. This leaves just the sine function to deal with. Lastly, show that y(x) = c2 sin(
√
λx) satisfies the condition

y′(L) = 0 for the specific values
√
λ = (2n+ 1) π

2L
where n = 1, 2, 3, . . . .

1There are, of course, many ways to do this. You could re-derive the given information, quote a previous homework or substitute the solutions into

the ODE. You choice.
2Some of these results can be found in long homework number 7
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2.1.2. Case IV. From the previous table of functions, first show that y′(0) = 0 implies that c2 = c4 = c6 = 0. Next show that y(L) = 0

implies that c3 = c5 = 0. This leaves just the cosine function to deal with. Lastly, show that y(x) = c1 cos(
√
λx) satisfies the condition

y(L) = 0 for the specific values
√
λ = (2n+ 1) π

2L
where n = 1, 2, 3, . . . .

3. Power-Series Solutions to ODE’s and Hyperbolic Trigonometric Functions

Consider the ordinary differential equation:

y′′ − y = 0(5)

3.1. General Solution - Standard Form. Show that the solution to (5) is given by y(x) = c1e
x + c2e

−x.

3.2. General Solution - Nonstandard Form. Show that y(x) = b1 sinh(x) + b2 cosh(x) is a solution to (5) where sinh(x) =
ex − e−x

2

and cosh(x) =
ex + e−x

2
.

3.3. Conversion from Standard to Nonstandard Form. Show that if c1 =
b1 + b2

2
and c2 =

b1 − b2
2

then y(x) = c1e
x + c2e

−x =

b1 cosh(x) + b2 sinh(x).

3.4. Relation to Power-Series. Assume that y(x) =

∞X
n=0

anx
n to find the general solution of (5) in terms of the hyperbolic sine and

cosine functions. 3

4. Heat Equation on a closed and bounded spatial domain of R1+1

Consider the one-dimensional heat equation,

∂u

∂t
= c2

∂2u

∂x2
,(7)

x ∈ (0, L) , t ∈ (0,∞) , c2 =
K

σρ
.(8)

Equations (7)-(8) model the time-evolution of the temperature, u = u(x, t), of a heat conducting medium in one-dimension. The object,

of length L, is assumed to have a homogenous thermal conductivity K, specific heat σ, and linear density ρ. That is, K,σ, ρ ∈ R+. If we

consider an object of finite-length, positioned on say (0, L), then we must also specify the boundary conditions4,

(9) ux(0, t) = 0, ux(L, t) = 0, .

Lastly, for the problem to admit a unique solution we must know the initial configuration of the temperature,

(10) u(x, 0) = f(x).

4.1. Separation of Variables : General Solution. Assume that the solution to (7)-(8) is such that u(x, t) = F (x)G(t) and use separation

of variables to find the general solution to (7)-(8), which satisfies (9)-(10). 5

4.2. Qualitative Dynamics. Describe how the long term behavior of the general solution to (7)-(10) changes as the thermal conductivity,

K, is increased while all other parameters are held constant. Also, describe how the solution changes when the linear density, ρ, is increased

while all other parameters are held constant.

3The hyperbolic sine and cosine have the following Taylor’s series representations centred about x = 0,

cosh(x) =

∞X
n=0

x2n

(2n)!
sinh(x) =

∞X
n=0

x2n+1

(2n + 1)!
.(6)

It is worth noting that these are basically the same Taylor series as cosine/sine with the exception that the signs of the terms do not alternate. From

this we can gather a final connection for wrapping all of these functions together. If you have the Taylor series for the exponential function and extract

the even terms from it then you have the hyperbolic cosine function. Taking the hyperbolic cosine function and alternating the sign of its terms gives

you the cosine function. Extracting the odd terms from the exponential function gives the same statements for the hyperbolic sine and sine functions.

The reason these functions are connected via the imaginary number system is because when i is raised to integer powers it will produce these exact sign

alternations. So, if you remember ex =
P∞
n=0 xn/n! and i =

√
−1 then the rest (hyperbolic and non-hyperbolic trigonometric functions) follows!

4Here the boundary conditions correspond to perfect insulation of both endpoints
5An insulated bar is discussed in examples 4 and 5 on page 557.
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4.3. Fourier Series : Solution to the IVP. Define,

(11) f(x) =

8>>><>>>:
2k

L
x, 0 < x ≤ L

2
,

2k

L
(L− x), L

2
< x < L

and for the following questions we consider the solution, u, to the heat equation given by, (7)-(8), which satisfies the initial condition given

by (17). 6 For L = 1 and k = 1, find the particular solution to (7)-(8) with boundary conditions (9)-(10) for when the initial temperature

profile of the medium is given by (17). Show that lim
t→∞

u(x, t) = favg = 0.5.7

5. Wave Equation on a closed and bounded spatial domain of R1+1

Consider the one-dimensional wave equation,

∂2u

∂t2
= c2

∂2u

∂x2
,(12)

x ∈ (0, L) , t ∈ (0,∞) , c2 =
T

ρ
.(13)

Equations (7)-(8) model the time-evolution of the displacement from rest, u = u(x, t), of an elastic medium in one-dimension. The object,

of length L, is assumed to have a homogeneous lateral tension T , and linear density ρ. That is, T, ρ ∈ R+. Assume, as well, the boundary

conditions8,

(14) ux(0, t) = 0, ux(L, t) = 0,

and initial conditions,

u(x, 0) = f(x),(15)

ut(x, 0) = g(x).(16)

5.1. Separation of Variables : General Solution. Assume that the solution to (12)-(13) is such that u(x, t) = F (x)G(t) and use

separation of variables to find the general solution to (12)-(13), which satisfies (14)-(16). 9 10

5.2. Qualitative Dynamics. Describe how the the general solution to (12)-(13) changes as the tension, T , is increased while all other

parameters are held constant. Also, describe how the solution changes when the linear density, ρ, is increased while all other parameters

are held constant.

5.3. Fourier Series : Solution to the IVP. Define,

(17) f(x) =

8>>><>>>:
2k

L
x, 0 < x ≤ L

2
,

2k

L
(L− x), L

2
< x < L.

Let L = 1 and k = 1 and find the particular solution, which satisfies the initial displacement, f(x), given by (17) and has zero initial

velocity for all points on the object.

6When solving the following problems it would be a good idea to go back through your notes and the homework looking for similar calculations.
7It is interesting here to note that though the initial condition f doesn’t appear to satisfy the boundary conditions its periodic Fourier extension

does. That is, if you draw the even periodic extension of the initial condition then you would see that the slope is not well defined at the end points.

Remembering that the Fourier series averages the right and left hand limits of the periodic extension of the function f at the endpoints shows that the

boundary conditions are, in fact, satisfied, since the derivative of an average is the average of derivatives.
8These boundary conditions imply that the object must have zero slope at each endpoint.
9It is important to notice that the solution to the spatial portion of the problem is the same as the heat problem above.
10Remember that in this case we have a nontrivial spatial solution for zero eigenvalue. From this you should find the associated temporal function

should find that G0(t) = C1 + C2t.
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