
Selection rules 
•  In Dirac notation, the dipole matrix element is: 

•  Working with the symmetries of wavefunctions leads to 
selection rules about which transitions can take place.  
–  Parity: r is odd, so u1 must be opposite parity of u2 

–  Angular momentum: Δl = ±1. Photon carries 1 unit of ang. mom.  

•  Exceptions:  
–  Transition might take place under other moments:  

•  Magnetic dipole, electric quadrupole, etc. 
•  Leads to longer lifetimes.  

–  States might not be “pure”, mixture of eigenstates 
•  External or internal perturbations 

µ21 = 2 − er 1 = u1 r( ) −er( )u2* r( )dV∫
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QM approach 
•  Next level up in accuracy in QM is to approximately solve 

the Schrodinger equation in the presence of the incident 
field 
–  QM representation of the electron wavefunction  
–  Classical representation of the EM field as a perturbation 

•  Without external field:          With external field (E-dipole): 

•  Assume wavefunction with field can be written in terms of 
a linear combination of wavefunctions without field 

ψ r,t( )

 ψ n r,t( ) = un r( )e−Ent /

 
Ĥψ = i ∂ψ

∂t

→ Ĥ0ψ n = Enψ n 
Ĥ0ψ = i ∂ψ

∂t

Ĥ = Ĥ 0+ ′Ĥ

ψ r,t( ) = an t( )ψ n r,t( )
n
∑

′Ĥ = µ ⋅E = −er ⋅E0 sinωt



Time-dependent perturbation theory 
•  Easiest to concentrate on 2 levels 
•  Assume close to resonance: 

•  Assume weak probability of excitation: 

•  Put form of solution into time-dependent SE (with field) 
•  Transition rate will be 

•  Result: “Fermi’s Golden Rule”  

 ω ≈ E2 − E1( ) /  =ω 21

 a1 t( ) ≈1, a2 t( )1

W12 =
d
dt

a2 t( ) 2

W12 ν( ) = π 2

3h2
µ21

2 E0
2δ ν −ν0( )

δ ν −ν0( ) Dirac delta function 

f ν( )δ ν −ν0( )dν∫ = f ν0( )



Fermi’s golden rule: broadband source 
•  From previous slide, the transition rate is:  

•  Express field in terms of (total) energy density: 

•  We need to account for frequency dependence of source.  
–  When EM source varies in frequency, energy density btw ν’ and 
ν’+dν’ is 

–  Total energy density is  

–  So the contribution to the rate at ν’ is 

→W12 ν( ) = 2π 2

3n2ε0h
2 µ21

2 ρδ ν −ν0( )ρ = 1
2 n

2ε0E0
2

dρ = ρ ′ν d ′ν

dW12 ′ν( ) = 2π 2

3n2ε0h
2 µ21

2δ ′ν −ν0( )ρ ′ν d ′ν

ρ = ρ ′ν d ′ν∫

W12 ν( ) = π 2

3h2
µ21

2 E0
2δ ν −ν0( )



Fermi’s golden rule: blackbody source 
•  Using  
•  We convert the total rate into an integral over all 

frequencies:  

 
•  Using the properties of the delta function,  

•  Example: if the source is a blackbody, 

•  the total rate is: 

W12 ν( ) = 2π 2

3n2ε0h
2 µ21

2 ρδ ν −ν0( )→ 2π 2

3n2ε0h
2 µ21

2 ρ ′ν δ ′ν −ν0( )d ′ν∫

W12 =
2π 2

3n2ε0h
2 µ21

2 ρν0

ρ ν( )dν = ρνdν= 8π ν 2

c3
hν

ehν /kBT −1
dν

ρ = ρ ′ν d ′ν∫

W12 =
2π 2

3n2ε0h
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2 8π
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3

ehν0 /kBT −1



Fermi’s golden rule: general lineshape 
•  The delta function represents an infinitely narrow 

linewidth. For a finite linewidth: 

 
•  For a general input spectral profile:  

•  Integrate to get total rate: 
 

•  For a very narrow linewidth laser, the spectral energy 
density can be approximated by a delta function.  

→W12 ν( ) = 2π 2

3n2ε0h
2 µ21

2 ρδ ν −ν0( )→ 2π 2

3n2ε0h
2 µ21

2 ρ g ν −ν0( )

dW12 ′ν( ) = 2π 2

3n2ε0h
2 µ21
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2 µ21
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For other lineshape:  



Approaches to more practical 
calculations 

•  For laser input the calculation is involved 

–  Convert energy density to intensity 
–  Put dipole moment in terms of quantities that are 

measured 
•  Approaches: 

–  Cross-sections for absorption, stimulated emission 
–  Einstein A and B coefficients: measure lifetime 

W12 =
2π 2

3n2ε0h
2 µ21

2 ρνLδ ′ν −ν L( )g ′ν −ν0( )d ′ν∫

= 2π 2

3n2ε0h
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2 g ν L −ν0( )ρνL


