QM atomic transitions

We’'ll take an approach to understanding transitions from the
gquantum perspective

* An isolated atom in a pure energy eigenstate is in a

Stationary state: o (r,t) . (r)e—iEnt/h

— There is time dependence to the phase, but the amplitude remains
constant. So, no transitions.

* An applied EM field of the right frequency can induce a
mixture of two states:

l/ll(l',t) = ul(r)e—iElt/h W, (l‘,t) =u, (r)e—iEzt/h
— Superposition:
perp v (r.t)=a,(t)y, (r.0)+a, (t), (r.0)

— w/ normalization: ‘al(t)‘z +‘a2(;)‘2 _1



QM charge distribution

The electron is not localized in QM.
The charge density can be calculated from w:
p(r.r)=—dw(r.c)
For a stationary state:
p(r.t)=—ely,(r.r)’ u, (r)
— No time dependence, charge is not moving!

For a superposition state:
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p(l’,t)z—e‘l//(l',t) :_e‘a11//1+a21//2|
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—E t/h
" = —e

= —e‘un(r)e

2 2 % % * *
= _e(|a1l//1| +|a21//2| Taa, YW, ra a,y, l//2)
— Cross terms will lead to oscillation in the charge
distribution. This oscillation can lead to EM radiation.



QM dipole moment calculation

* The nucleus is localized, but the electron charge
Is distributed.

* The effective position is calculated like the center

of mass, so dipole moment is: .

applied
u(t)=—efrly(eaf av  p=ar
jr |all//1|2dV+jr|a21//2|2dV <
u(r)=—e : * . Wy
+J.a1a2 ry,y, dvV+ J‘al ary, y,dv

— Terms in red go to zero

* Probability density is ‘even’, r is ‘odd’: parity
forces them to zero



Time dependent dipole moment

* The cross terms (which are like interference terms
In optics), lead to time dependent oscillation:

Hoge (t) = _e(alaz*_‘.“//ﬂ//; dv + al*az J-rllfl*lljz dV)

= —e(alaz*_‘-r u, (r)u, (r)e”(Ez_El)t/h dV+a, a, Jul (r)u, (r) g BB dV)

— Oscillation frequency: ®,,=(E,—E,)/h
Hose (t) = _eRe[zalaz*uzlein]
W, = J.ul (r)(—er)uz* (r)dv Dipole “matrix element”

* My, Is the part that depends on the atomic structure,

independent of the populations.
« This is a vector, but the direction of r corresponds to the E-field

direction, relative to the atom or molecule.



QM dipole radiation: lifetime

- Estimate the radiated power from this oscillating dipole.
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_ 1 2ex3(t)_ 1 240 gt) iz 1 = 5
dre, 3 ¢ 4re, 3 ¢
. * 2 2
Hose (t):_Re[zalaz*umelwmt] (Z+Z ) =|z
1 2 46021 :u21

rad = dre, 3 |a| |a2| cos[w21t]

Time average over fast oscillation:
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6021 uu21 — ha)21
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1 3mhe,c’
Ty, = =" 3 2 Estimate of spontaneous lifetime
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Spontaneous decay

If we assume that the excitation probability of the upper
level iIs small, then 2 2
|a1| —1—|a2| =1

We can then deduce the change in upper level population:

dE — d 2
Z =—Pb,, =ho, d_t‘az (t)‘
d

1
—‘az (t)‘2 = ——‘az (t)‘2 %‘az (t)‘2 z‘az (O)‘Zexp[—t/fsp]

dt T,

This connects the spontaneous emission rate to a
quantum calculation of the dipole moment.



