
10-6.  

   

Consider a small mass m on the surface of the water. From Eq. (10.25) 

   eff 2f rm m m r m        F F R r v     

In the rotating frame, the mass is at rest; thus, eff 0F . The force F will consist of gravity and the 

force due to the pressure gradient, which is normal to the surface in equilibrium. Since 

0f r  R v , we now have 

   0 pm m    g F r   

where pF  is due to the pressure gradient. 

   

Since eff 0F , the sum of the gravitational and centrifugal forces must also be normal to the 

surface. 
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10-7. For a spherical Earth, the difference in the gravitational field strength between the poles 
and the equator is only the centrifugal term: 

  2
poles equatorg g R   

For 5 17.3 10 rad s      and R = 6370 km, this difference is only 234 mm s . The disagreement 
with the true result can be explained by the fact that the Earth is really an oblate spheroid, 
another consequence of rotation. To qualitatively describe this effect, approximate the real Earth 
as a somewhat smaller sphere with a massive belt about the equator. It can be shown with more 
detailed analysis that the belt pulls inward at the poles more than it does at the equator. The 
next level of analysis for the undaunted is the “quadrupole” correction to the gravitational 
potential of the Earth, which is beyond the scope of the text. 

10-9. Choosing the same coordinate system as in Example 10.3 (see Fig. 10-9), we see that the 
lateral deflection of the projectile is in the x direction and that the acceleration is 

    02 2 sin cosx z ya x v V       (1) 

Integrating this expression twice and using the initial conditions,  0 0x   and  0 0x  , we 

obtain 

    2
0 cos sinx t V t    (2) 

Now, we treat the z motion of the projectile as if it were undisturbed by the Coriolis force. In 
this approximation, we have 
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from which the time T of impact is obtained by setting z = 0: 

  02 sinV
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Substituting this value for T into (2), we find the lateral deflection at impact to be 
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10-11.  

   

This problem is most easily done in the fixed frame, not the rotating frame. Here we take the 
Earth to be fixed in space but rotating about its axis. The missile is fired from the North Pole at 
some point on the Earth’s surface, a direction that will always be due south. As the missile 
travels towards its intended destination, the Earth will rotate underneath it, thus causing it to 
miss. This distance is: 

  = (transverse velocity of Earth at current latitude)  (missile’s time of flight) 

 sinR T     (1) 
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d R d
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Note that the actual distance d traveled by the missile (that distance measured in the fixed 
frame) is less than the flight distance one would measure from the Earth. The error this causes 

in  will be small as long as the miss distance is small. Using R = 6370 km, 57.27 10    rad
1s , we obtain for the 4800 km, T = 600 s flight a miss distance of 190 km. For a 19300 km flight 

the missile misses by only 125 km because there isn’t enough Earth to get around, or rather 
there is less of the Earth to miss. For a fixed velocity, the miss distance actually peaks 
somewhere around d = 12900 km. 

Doing this problem in the rotating frame is tricky because the missile is constrained to be in a 
path that lies close to the Earth. Although a perturbative treatment would yield an order of 
magnitude estimate on the first part, it is entirely wrong on the second part. Correct treatment 
in the rotating frame would at minimum require numerical methods. 

10-15. The Lagrangian in the fixed frame is 

   21

2
f fL mv U r   (1) 

where fv  and fr  are the velocity and the position, respectively, in the fixed frame. Assuming 

we have common origins, we have the following relation 

  f r r  v v r  (2) 



where rv  and rr  are measured in the rotating frame. The Lagrangian becomes 
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The canonical momentum is 
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The Hamiltonian is then 
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H is a constant of the motion since 0L t   , but H  E since the coordinate transformation 

equations depend on time (see Section 7.9). We can identify 
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as the centrifugal potential energy because we may find, with the use of some vector identities, 
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which is the centrifugal force. Computing the derivatives of (3) required in Lagrange’s 
equations 
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     r rm m U      v r    (12) 

The equation of motion we obtain is then 

     2r r rm U m m      a r v    (13) 

If we identify eff rmF a  and U F , then we do indeed reproduce the equations of motion 

given in Equation 10.25, without the second and third terms. 



10-18. Let us choose the coordinate system Oxyz as shown in the figure. 

   

The projectile’s velocity is 

  

0

0

cos

sin

0 0





   
     
   
   

x

y

v v

v v v gt  where  = 37° 

The Earth’s angular velocity is 
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So the Coriolis acceleration is 

    0 02 2 cos sin 2 sin cos           c za v v v gt e  

The velocity generated by Coriolis force is 
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And the distance of deviation due to the Coriolis force is 
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The flight time of the projectile is 02 sin
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v
t . If we put this into cz , we find the deviation 

distance due to Coriolis force to be 

  ~ 260 mcz  


