## Geometric Optics and ABCD

Lenses and the imaging equation
Direct ray tracing
ABCD matrices

## Geometric optics

- Approaches:
- Paraxial calculations (assume small angle to optical axis)
- Imaging equations: simple lens, Lensmakers' for thick lens
- ABCD matrices for optical system
- Non-paraxial, general case
- Analytic calculation of aberrations: Zernike polynomials, Taylor-type expansions of wavefront error
- Computer tracing (no approximations). Example: Zemax, Oslo
- Design procedure
- Find existing design close to what could work for application
- Paraxial trace with ray diagram
- Calculate magnification, limiting apertures
- Optimize with ABCD matrices or computer program
- Analyze aberrations


## Geometric optics: lenses

For a nice summary, see Lens (optics) Wikipedia page https://en.wikipedia.org/wiki/Lens_(optics)


## Geometric optics: imaging equation


$\mathrm{s}_{1}, \mathrm{~s}_{2}$ are positive as shown
$\mathrm{s}_{1}, \mathrm{~s}_{2}=$ infinity: rays are collimated

$$
M=-\frac{s_{2}}{s_{1}} \quad \begin{aligned}
& \text { Magnification calculate with similar triangles } \\
& \mathrm{M}<0 \text { inverted image } \\
& \mathrm{M}=-1 \text { when } \mathrm{s}_{1}=\mathrm{s}_{2}=2 \mathrm{f}, 1: 1 \text { imaging }
\end{aligned}
$$

## Geometric optics: virtual images


$\mathrm{s}_{1}, \mathrm{~s}_{2}<0$ if on the opposite side of lens
"virtual" image: position where image seems to come from


Concave lens: $f<0$
Same convention for $\mathrm{s}_{1}, \mathrm{~s}_{2}$

## Raytracing: single curved interface

$$
\text { Snell: } n_{1} \sin \left(\theta_{i}\right)=n_{2} \sin \left(\theta_{r}\right)
$$

$$
\begin{aligned}
& \frac{y_{1}}{p}=\tan \left(\theta_{i}-\phi\right) \approx \theta_{i}-\phi \\
& \frac{y_{1}}{q}=\tan \left(\phi-\theta_{r}\right) \approx \phi-\theta_{r} \\
& \frac{y_{1}}{R_{1}}=\sin (\phi) \approx \phi
\end{aligned}
$$



$$
\begin{aligned}
& \frac{n_{2}}{n_{1}}=\frac{\sin \left(\theta_{i}\right)}{\sin \left(\theta_{r}\right)} \approx \frac{\theta_{i}}{\theta_{r}}=\frac{\phi+\frac{y_{1}}{p}}{\phi-\frac{y_{1}}{q}}=\frac{\frac{y_{1}}{R_{1}}+\frac{y_{1}}{p}}{\frac{y_{1}}{R_{1}}-\frac{y_{1}}{q}}=\frac{\frac{1}{R_{1}}+\frac{1}{p}}{\frac{1}{R_{1}}-\frac{1}{q}} \quad \text { In paraxial appx, y' s cancel } \\
& n_{2}\left(\frac{1}{R_{1}}-\frac{1}{q}\right)=n_{1}\left(\frac{1}{R_{1}}+\frac{1}{p}\right) \rightarrow \frac{1}{R_{1}}\left(n_{2}-n_{1}\right)=\frac{n_{2}}{q}+\frac{n_{1}}{p}
\end{aligned}
$$

## Raytracing: two curved interfaces

- add second interface: $\mathrm{R}>0$ if center is to right
- assume $y_{2}=y_{1}$


## Eqn from 1st:

$\frac{1}{R_{1}}\left(n_{2}-n_{1}\right)=\frac{n_{2}}{q}+\frac{n_{1}}{p}$
Adapt to 2nd interface:

$$
\begin{aligned}
& n_{1} \leftrightarrow n_{2} \quad q \rightarrow q^{\prime} \quad p \rightarrow-q \\
& \rightarrow \frac{1}{R_{2}}\left(n_{1}-n_{2}\right)=\frac{n_{1}}{q^{\prime}}-\frac{n_{2}}{q}
\end{aligned}
$$

p

Solve eqn1 for image distance
$\rightarrow \frac{n_{2}}{q}=\frac{1}{R_{1}}\left(n_{2}-n_{1}\right)-\frac{n_{1}}{p}$
$\frac{1}{R_{2}}\left(n_{1}-n_{2}\right)=\frac{n_{1}}{q^{\prime}}-\frac{1}{R_{1}}\left(n_{2}-n_{1}\right)+\frac{n_{1}}{p}$
$\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)\left(\frac{n_{2}}{n_{1}}-1\right)=\frac{1}{q^{\prime}}+\frac{1}{p}$
$\mathrm{n}_{1}$
$\mathrm{n}_{1}$
$\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)\left(\frac{n_{2}}{n_{1}}-1\right)=\frac{1}{f}$
Focal length (lensmaker's eqn)
$\frac{1}{f}=\frac{1}{s_{o}}+\frac{1}{s_{i}} \quad$ Imaging equation

## Aberrations

- For non-paraxial rays errors in how rays focus


Spherical aberration

Coma:
tilted lens, off-axis points


## Lens systems

- It is possible to cascade the lens imaging equation for multiple lenses:
- Image from lens 1 is object for lens 2

- For more complicated systems, use a matrix method: ABCD matrices
- Also good for resonators
- Does not account for aberrations


## ABCD ray matrices

- Formalism to propagate rays through optical systems
- Keep track of ray height $r$ and ray angle $\theta=d r / d z=r$
- Treat this pair as a vector: $\binom{r}{r^{\prime}}$
- Optical system will modify both the ray height and angle, e.g.

$$
\binom{r_{2}}{r_{2}^{\prime}}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{r_{1}}{r_{1}^{\prime}}
$$

- Successive ABCD matrices multiply from the left
- Translation

$$
\begin{aligned}
& r_{2}=r_{1}+L r_{1}^{\prime} \\
& r_{2}^{\prime}=r_{1}^{\prime}
\end{aligned} \rightarrow\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)
$$



## Refraction in ABCD

- Translation: $\left(\begin{array}{ll}1 & L \\ 0 & 1\end{array}\right)$
- Flat interface

$$
\begin{array}{ll}
r_{2}=r_{1} & \begin{array}{ll}
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \\
n_{1} \theta_{1} \approx n_{2} \theta_{2}
\end{array} \\
\begin{array}{ll}
r_{2}^{\prime}=\frac{n_{1}}{n_{2}} r_{1}^{\prime}
\end{array} & \left.\begin{array}{cc}
1 & 0 \\
0 & n_{1} / n_{2}
\end{array}\right)
\end{array}
$$

- Window: calculate matrix


$$
\begin{aligned}
& \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right)\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / n
\end{array}\right) \\
& \quad=\left(\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right)\left(\begin{array}{ll}
1 & L / n \\
0 & 1 / n
\end{array}\right)=\left(\begin{array}{cc}
1 & L / n \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Effective thickness reduced by $n$

## Curved surfaces in ABCD

- Thin lens: matrix computes transition from one side of lens to other


$$
\frac{1}{q}=\frac{1}{f}-\frac{1}{p} \quad \rightarrow r_{2}^{\prime}=-r_{1}\left(\frac{1}{f}-\frac{1}{p}\right)=-\frac{r_{1}}{f}+r_{1}^{\prime} \quad \operatorname{lens}\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \rightarrow\left(\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right)
$$

- Spherical interface: radius $R$

$$
\rightarrow\left(\begin{array}{cc}
1 & 0 \\
\frac{n_{1}-n_{2}}{n_{2}} \frac{1}{R} & \frac{n_{1}}{n_{2}}
\end{array}\right)
$$

