
Geometric Optics and ABCD  
Lenses and the imaging equation 

Direct ray tracing 

ABCD matrices 



Geometric optics 
•  Approaches: 

–  Paraxial calculations (assume small angle to optical axis) 
•  Imaging equations: simple lens, Lensmakers’ for thick lens 
•  ABCD matrices for optical system 

–  Non-paraxial, general case 
•  Analytic calculation of aberrations: Zernike polynomials, 

Taylor-type expansions of wavefront error 
•  Computer tracing (no approximations). Example: Zemax, Oslo 

•  Design procedure 
–  Find existing design close to what could work for application 
–  Paraxial trace with ray diagram 

•  Calculate magnification, limiting apertures 
–  Optimize with ABCD matrices or computer program 
–  Analyze aberrations 



Geometric optics: lenses 
For a nice summary, see Lens (optics) Wikipedia page 
https://en.wikipedia.org/wiki/Lens_(optics) 
 
 



Geometric optics: imaging equation 

1
f
= 1
s1
+ 1
s2

s1, s2 are positive as shown 
s1, s2 = infinity: rays are collimated 

M = − s2
s1

Magnification calculate with similar triangles 
M < 0 inverted image 
M = -1 when s1 = s2 = 2 f, 1:1 imaging 



Geometric optics: virtual images 

s1, s2 < 0 if on the 
opposite side of lens 
  
“virtual” image: position 
where image seems to 
come from 
 

Concave lens: f < 0 
 
Same convention for s1, s2 
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Raytracing: single curved interface 
n1 sin θi( ) = n2 sin θr( )Snell: 
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Raytracing: two curved interfaces 
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-  add second interface: R > 0 if center is to right  
-  assume y2=y1 

1
R1

n2 − n1( ) = n2
q
+ n1
p

Eqn from 1st:  
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Focal length 
(lensmaker’s eqn)  
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Imaging equation 
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Solve eqn1 for image distance 
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Adapt to 2nd interface: 
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Aberrations 
•  For non-paraxial rays errors in how rays focus 

Spherical 
aberration 

Coma: 
   tilted lens, off-axis points 



Lens systems 
•  It is possible to cascade the lens imaging 

equation for multiple lenses:  
–  Image from lens 1 is object for lens 2 

•  For more complicated systems, use a matrix 
method: ABCD matrices 
–  Also good for resonators 
–  Does not account for aberrations  

s1 s4 s3=d–s2 s2 

d 



ABCD ray matrices 
•  Formalism to propagate rays through optical systems 

–  Keep track of ray height  r  and ray angle θ = dr/dz = r’ 
–  Treat this pair as a vector: 

–  Optical system will modify both the ray height and angle, e.g.  

–  Successive ABCD matrices multiply from the left 

•  Translation 
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Refraction in ABCD 
•  Translation:  
•  Flat interface 

•  Window: calculate matrix 
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Special case: 
 n1 = 1, n2 = n 



Curved surfaces in ABCD 
•  Thin lens: matrix computes transition from one side of lens 

to other 

•  Spherical interface: radius R 
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