


Geometric optics

* Approaches:
— Paraxial calculations (assume small angle to optical axis)
» Imaging equations: simple lens, Lensmakers’ for thick lens
« ABCD matrices for optical system
— Non-paraxial, general case

 Analytic calculation of aberrations: Zernike polynomials,
Taylor-type expansions of wavefront error

« Computer tracing (no approximations). Example: Zemax, Oslo

* Design procedure
— Find existing design close to what could work for application
— Paraxial trace with ray diagram
« Calculate magnification, limiting apertures
— Optimize with ABCD matrices or computer program
— Analyze aberrations



Positive (converging) lens Negative (diverging) lens




Geometric optics: imaging equation
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S4, S, are positive as shown
S4, S, = infinity: rays are collimated

S, Magnification calculate with similar triangles
M =—-—M<0inverted image
51 M=-1when s, =s,=2f, 1:1imaging



Geometric optics: virtual images
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Concave lens: f<0

Same convention for s,, s,



Raytracing: single curved interface

2= tan(6, - ) ~ 6, — ¢
Snell: n,sin(6,)=n, sin(6,) p
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Raytracing: two curved interfaces

- add second interface: R > 0 if center is to right
- assume Yy,=Y,
Eqgn from 1st:

Adapt to 2nd interface:
n<on qg—q P—>—4q




Aberrations

For non-paraxial rays errors in how rays focus
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Lens systems

* |tis possible to cascade the lens imaging
equation for multiple lenses:

— Image from lens 1 is object for lens 2

S, S, S,=d-s, Sy

o

* For more complicated systems, use a matrix
method: ABCD matrices
— Also good for resonators
— Does not account for aberrations



ABCD ray matrices

« Formalism to propagate rays through optical systems
— Keep track of ray height r and ray angle 6 =dr/dz=7r
— Treat this pair as a vector: [ r )

r

— Optical system will modify both the ray height and angle, e.g.

sy

— Successive ABCD matrices multiply from the left
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Refraction in ABCD
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Curved surfaces in ABCD

« Thin lens: matrix computes transition from one side of lens
to other

« Spherical interface: radius R
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