Consider the following two expressions, where t is the regular time and t prime is the retarded time. When are they the same?
$V=\frac{\mu_{0} c}{4 \pi r} \hat{r} \cdot \frac{d \vec{p}\left(t^{\prime}\right)}{d t}$

$$
V=\frac{\mu_{0} c}{4 \pi r} \hat{r} \cdot \frac{d \vec{p}\left(t^{\prime}\right)}{d t^{\prime}}
$$

A. Always
B. Never
C. Far from the source
D. Close to the source

Consider the following two expressions, where t is the regular time and t prime is the retarded time. When are they the same?
$V=\frac{\mu_{0} c}{4 \pi r} \hat{r} \cdot \frac{d \vec{p}\left(t^{\prime}\right)}{d t}$

$$
V=\frac{\mu_{0} c}{4 \pi r} \hat{r} \cdot \frac{d \vec{p}(t)}{d t}
$$

A. Always
B. Never
C. Far from the source
D. Close to the source

450 nm blue light will scatter roughly X times as well as 700 nm red light, where X is...
A. About 1.6
B. About 0.41
C. About 0.27
D. About 0.17
E. About 5.9

The acceleration of a simple harmonic oscillator will be proportional to
A. ω
B. ω^{2}
C. ω^{3}
D. ω^{4}
E. It doesn't depend on frequency

Compton scattering

Exam 2 statistics

Average 34/50, High 46/50
High on problem 1 16/20, high on problem 2 30/30

