
Phys 361 Homework 11  

 

 

1a)  You guys want to see a neat trick?  Calculate the vector potential at a point some 

distance r away from an infinite straight wire with some current I.   

b)  You probably got a divergent integral.  That’s bad.  But not unrecoverable.  Try this:  

When you go to integrate along the length of the wire, instead of letting your bounds be –∞ to 

+∞, double your integrand and integrate from 0 to R.  Write the vector potential you get. 

c)  Ok, so now let R get big.  Not quite infinite, but let � ≫ �.  Write the resulting potential 

and take the curl of it.  Or take the curl of your potential and then let R get big; whichever 

floats your boat.  Are we in a good place now? 

d)  Justify what we just did.  Why was it okay?  Or, if you can’t convince yourself it was 

okay, argue for why it was inappropriate. 

 

2)  (based on Pollack & Stump 8.28) 

a)  Let’s suppose we have a very long cylindrical conducting wire of radius �� laying right 

along the z-axis.  The wire carries a uniformly distributed current �� in the +z direction.  Find 

the magnetic field inside and outside the wire. 

b)  Now let’s drill a cylindrical hole down the length of the wire, parallel to the z axis, but 

offset from it.  The center of the hole is at � =  	 and radius of the hole is b.  The hole sits 

entirely inside of the original wire.  The wire still carries the same total current as before.  

Find the magnetic field in the hole.  Hint:  The field in the hole should work out to be 

uniform.  Another hint:  A region of space with no current is the same as a region of space 

with current in the +z direction superimposed on the same region with current going in the -z 

direction.   

Note:  The technique you get to use here is one of very general applicability, since lots of 

things look like fairly symmetric objects with bits removed (or added, for that matter).  

Superposition is your friend.   

 

3)  (based on Pollack and Stump 8.22)   

In class we (painfully) derived the vector potential associated with a spinning spherical shell 

of charge.  Use that vector potential to find the magnetic field everywhere inside and outside 

the shell.  Then sketch the field (by hand or in Mathematica) and describe what you get.  If 

you sketch the field by hand, you might find it useful to get oriented by comparing your 

equation to the equation for the field made by a dipole. 



4)  The previous problem got us used to working with a spinning sphere of charge as a source 

of magnetic fields.  You’ve probably been doing spin in quantum mechanics lately, or will be 

pretty soon.  Sometimes we try to classically conceptualize spin as the result of a tiny ball of 

charge literally spinning.  The mass of the ball leads to the angular momentum (spin) of the 

elementary particle, and the charge of the ball leads to the magnetic moment of the 

elementary particle. This is, as you may already know, totally inappropriate.  Electrons aren’t 

actually little rotating balls.  Spin is intrinsic angular momentum that’s just there and if you 

don’t like it, too bad.  Nature doesn’t care what you think.  Ditto with the intrinsic magnetic 

moment of a particle.  Nevertheless, we’ll try out a classical model of spin. 

a)  Given a spherical shell of radius a and surface mass density σm rotating at some angular 

speed ω, figure out its spin angular momentum.  Let the shell be centered on the origin, since 

classical angular momentum is origin-dependent. 

 

b)  Given the same shell with surface charge density σq, figure out its magnetic dipole 

moment. 

 

c)  Now let’s model an electron as a spinning shell of charge (something we’ve done before). 

Your answer to b) should depend on the radius of the shell.  Experimentally we’ve been able 

to determine the radius of an electron to be at most 10-22 m (many people believe it to be 

exactly zero, which is an odd possibility to ponder).1  We’ve also managed to measure the 

electron’s magnetic dipole moment to be -928x10-26 J/T.  If we plug this information into b), 

how fast would the electron have to be spinning if it is in fact a classical shell of charge?  

Note that things only get worse if the electron turns out to have a radius smaller than that. 

 

d)  Ok, so the very small size of the electron is kind of an issue in this model.  But, we can 

make that go away by taking the ratio of the electron’s spin magnetic moment to its spin 

angular momentum.  Then quite a lot of stuff cancels.  What do we get for that ratio, 

symbolically, using our shell model? Troll around on the internet and find out what the actual 

ratio turns out to be.  How did our model do this time? 

 

 

5)  (based on Pollack and Stump 8.24) 

We haven’t talked much about the magnetic field of the Earth yet.  It turns out to be more 

complicated than we might at first think:  it doesn’t only point north.  The Earth’s magnetic 

field comes from its rotating liquid core, which is deep below the surface and makes a 

roughly dipole-ish field.  Depending on where you are on the surface of the Earth, the field 

might point mostly up or down rather than mostly north or south.   

 

                                                             
1 If you root around on the interwebs, you might find a number called the classical electron radius, which is on 

the order of 10-15.  This number has nothing to do with the measured physical radius of the electron – it’s a 

calculated value that represents how big the electron would have to be for its mass energy (
��) to be the same 

as the energy contained in its electric field. 



It’s a pretty good approximation to say that the magnetic field comes from a point dipole at 

the center of the earth, with the dipole moment given by: 


�� = 
�(sin �� cos �� �̂ + sin �� sin �� �̂ + cos �� ��) 

Where 
�  =  7.79 × 10�� A ∙ m�, and �� and �� are constants equal to 169 degrees and 109 

degrees respectively.  The z axis is the Earth’s rotation axis and the x axis passes through the 

prime meridian.  Positive � is to the east. 

a)  Using the above dipole moment and the equation for the magnetic field of a dipole, find 

the magnetic field at some arbitrary point on the surface of the Earth with colatitude � and 

longitude �.  Give me the field components north (in the −�� direction), to the east (�)), and 

vertically (�̂). 

b)  Find the field at the longitude and latitude corresponding to your home town.  Report the 

numbers in Gauss.  A Gauss is a small unit of field (1 G = 10-4 T), and it’s not too unusual to 

see small fields (like the Earth’s) reported in Gauss.  

 
 


