
Reading assignment

Schroeder, section 2.4.



Recap of lecture 6

• Constituent states, microstates, and macrostates.
• Goal is calculation of probabilities of macrostates.
• If microstates are equally probable (usually assumed), the

probability of a macrostate is proportional to the number
Ω of microstates belonging to that macrostate.
Normalization by dividing by the total number of
microstates gives the probability.

• Toy problem—two-state paramagnet:

Ω(N↑) =

(
N

N↑

)
=

N !

N↑!N↓!
.

• Toy problem—Einstein model for lattice vibrations:

Ω(N, q) =
(N − 1 + q)!

q! (N − 1)!
=

(
N − 1 + q

q

)
.



Homework

HW Problem
Schroeder problem 2.7, p. 55.
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Our current view

We’ve seen that macrostates of an isolated system having more
microstates (higher multiplicity in Schroeder’s lingo) are
statistically more likely to occur than those having fewer. As
time progresses, transitions occur among accessible microstates
(those satisfying the constraints on the system, such as total
energy), so we expect measurements to observe the most
probable macrostates.

But it’s a bit difficult to see just how to apply this idea to an
isolated system. For example, for an isolated system of
harmonic oscillators with fixed total energy, if we take the
macrostates to be characterized by the total energy, there is
only one state, thus no comparisons with other macrostates can
be made. There is nothing intrinsic to this picture that would
preclude having all of the energy or all of the particles (say in a
gas) concentrated in one small portion of the available volume.
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Refining the picture

We could, however, compare regions in the system, to see
whether they have comparable amounts of energy. Intuitively,
we expect more even distributions to be more probable than
ones with large place-to-place variations. This is one reason
why we want to split our system into two (or more) parts and
consider interactions between them.

In addition, one often encounters problems in both
thermodynamics and statistical mechanics in which one needs
to predict the equilibrium states of interacting systems. The
simplest case (and the one to which a statistical treatment is
most directly relevant) is that of two systems weakly coupled so
that energy can flow between them (thermal contact), but
volume and particle exchanges are precluded.
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Two paramagnets in thermal contact

We’ll address the statistical aspects of the process of
equilibration of a pair of systems in thermal contact. Suppose
we have a pair of two-state paramagnets in thermal contact,
with the combined system isolated so that its total energy in an
external magnetic field is constant. In this case, we’ll
characterize macrostates by the division of energy between the
two subsystems, rather than by the combined total energy.

Let N1 and N2 be the numbers of magnetic moments in each
subsystem. We’ll define the zero of energy to be the ground
state, with all magnetic moments aligned (up) with the external
field. Then the energy is proportional to the number of
antialigned (down) moments, let’s call that ni, i indexing the
subsystem, with n1 + n2 = n fixed by the total-energy
constraint.
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Two paramagnets in thermal contact

We might initialize the system with n1 = n and n2 = 0 and ask
what will be the equilibrium macrostate (set of values of n1 and
n2) after a long time. If every microstate (characterized by the
full distribution of down moments) is assumed equally likely, we
can determine which values of n1 and n2 are most probable by
simply finding the number of microstates corresponding to each.

We know that for each paramagnet, the number of microstates
corresponding to the macrostate characterized by ni is

Ω(Ni, ni) =

(
Ni

ni

)
=

Ni!

ni!(Ni − ni)!
.

For each microstate of the first paramagnet, all the microstates
of the second paramagnet with the same n2 = n− n1 are
accessible, so the number of microstates corresponding to the
macrostate n of the full system is just the product of the
numbers Ω(Ni, ni) of the subsystems.
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Example

As an example, consider a pair of puny paramagnets with
N1 = 5 and N2 = 10 moments, respectively, and suppose the
energy is fixed by having a total of n = 5 antialigned moments.
The statistics are summarized as follows:

n1 Ω(5, n1) n2 Ω(10, n2) Ω(5, n1)Ω(10, n2) Probability
0 1 5 252 252 0.08392
1 5 4 210 1050 0.34965
2 10 3 120 1200 0.39960
3 10 2 45 450 0.14985
4 5 1 10 50 0.01665
5 1 0 1 1 0.00033

Clearly, the more even distributions (weighted by subsystem
size) of the antialigned moments are statistically favored. Note
that some of the states of paramagnet 2 are not accessible.
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Example

So, if we started with all of the energy in paramagnet 1, a
macrostate with only a single corresponding microstate, we can
expaect that after sufficient time, almost no measurements of
the moment distribution will find the combined system back in
that state. Energy will “flow” from paramagnet 1 to
paramagnet 2, simply because naturally occurring transitions
among the microstates of the combined system will lead with
high probability to some other state with a more even
distribution of antialigned moments. No work has been done,
and no particles have been exchanged between the subsystems.

This is the key concept in understanding equilibration through
heat flow.
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Homework

HW Problem
Schroeder problem 2.8, p. 59.
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The macroscopic trend

A graph of the probabilities or the number of accessible
microstates as a function of the parameter characterizing the
macrostate (say n1) has a peak around the most probable value
of the parameter.

That peak becomes narrower as the number of constituents
increases, becoming incredibly sharp for systems with
macroscopic numbers of particles.

The consequence of that is that macrostates other than the
most probable one will essentially never be observed.
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Factorials are annoying

Many of the combinatorial expressions we’ve encountered
contain multiple factorials, and these are often difficult to deal
with analytically. There is a much simpler, but approximate,
expression for the factorial, called Stirling’s approximation (or
Stirling’s formula), that can simplify expressions substantially.

There are a few, slightly different, formulations, all of which
rely on large values of the argument. That happens to be ideal
for our purposes, since our factorials for macroscopic systems
have arguments of magnitude typified by Avogadro’s number.
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Gamma functions and factorials

The derivation makes use of the Gamma function to represent
the factorial function, so let’s start by recalling the connection
between them.
We’ll define the Gamma function by

Γ(x + 1) =

∫ ∞

0
txe−t dt .

To see how it relates to the factorial, we’ll begin by integrating
by parts once. Let

u = tx dv = e−t dt

du = xtx−1 v = −e−t .
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Gamma functions and factorials

Then

Γ(x + 1) = −txe−t
∣∣∞
0︸ ︷︷ ︸

0

+x

∫ ∞

0
tx−1e−t dt︸ ︷︷ ︸
Γ(x)

= xΓ(x) .

This recursion relation allows us to write the Gamma function
of an integer as the product

Γ(n + 1) = n(n− 1)(n− 2) · · · 1Γ(1) .

But Γ(1) can be evaluated easily:

Γ(1) =

∫ ∞

0
e−t dt = 1 .

Thus, the Gamma function and the factorial function are
closely related:

Γ(n + 1) = n!
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Toward Stirling’s approximation

We’ll use the integral form of the Gamma function to derive
Stirling’s approximation for the factorial. Begin by rewriting
the integrand in a form that proves to be more convenient:

N ! =

∫ ∞

0
tNe−t dt

=

∫ ∞

0
eN ln t−tdt .

Next we’ll use a somewhat magic-looking substitution that we’ll
find does useful things for us. Let

t = N + y
√

N .

Then

dt =
√

N dy , t = 0 ⇔ y = −
√

N , and t = ∞⇔ y = ∞ .
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Toward Stirling’s approximation

This changes the expression for N ! to the much messier looking

N ! =
√

N

∫ ∞

−
√

N
eN ln(N+y

√
N)−N−y

√
Ndy .

This form is still exact, but this is the point where we need to
begin thinking about ways to simplify the mess through
approximation. The logarithm in the exponent is a prime
candidate, since there’s a well-known expansion for ln(1 + x).
To get something like that, we’ll factor out the N in the
argument of the logarithm:

ln(N + y
√

N) = ln

[
N

(
1 +

y√
N

)]
= ln N + ln

(
1 +

y√
N

)
.

For large N , the fraction y/
√

N is small compared to one, so
that the expansion of the logarithm proves useful.
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Toward Stirling’s approximation

The expansion, expressed in terms of ε to emphasize its utility
for small values of ε is

ln(1 + ε) = ε− ε

2
+

ε2

3
− . . . .

We’ll truncate this to two terms, in which case the factorial
becomes

N ! ≈
√

N

∫ ∞

−
√

N
eN ln N+y

√
N− y2

2
−N−y

√
Ndy

=
√

NeN ln N−N

∫ ∞

−
√

N
e−

y2

2 dy .

Now it’s starting to look much simpler! The integral could be
evaluated easily if the lower limit were 0 or ∞, but it’s the
rather inconvenient-looking −

√
N . However, the integrand, a

Gaussian function, falls off quite rapidly as y deviates from 0.
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Stirling’s approximation at last

This means we can replace the lower limit of the integral by
−∞ with little damage to the result when N is large. Then the
integral becomes the well-known∫ ∞

−∞
e−y2/2dy =

√
2π ,

and the approximation to the factorial becomes

N ! ∼
√

2πNeN ln N−N =
√

2πN

(
N

e

)N

(for large N),

which is Stirling’s approximation to N !.
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Taking the logarithm

It turns out that we’ll usually be more interested in the
logarithm of N !, so let’s see what Stirling’s approximation gives
for that:

lnN ! ≈ 1

2
ln 2π︸ ︷︷ ︸

≈ 0.92

+
1

2
lnN + N lnN −N

≈
(

N +
1

2

)
lnN −N

≈ N lnN −N ,

where we’ve neglected quantities of order 1 compared to N .
This very simple approximation, valid for large N , is also often
called Stirling’s approximation, and it’s the form we’ll use most
frequently.
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Looking back at what we’ve done

It’s interesting to note a simple connection between this result
and our starting point. We started with the exact expression

N ! =

∫ ∞

0
eN ln t−tdt .

Now the function comprising the integrand, let’s call it f(t),
goes to −∞ as t → 0 and as t →∞, and it has a single
maximum in between. To find it, just differentiate:

df

dt
=

N

t
− 1 = 0 ,

which locates the maximum at

t = N .



Entropy

Looking back at what we’ve done

The value at that maximum is then

f(N) = N lnN −N ,

which is the same as the approximation we found for lnN !. So
that approximation is equivalent to replacing the value of the
integral by the value of the integrand at its maximum:

N ! =

∫ ∞

0
eN ln t−tdt ∼ eN ln N−N (for large N.)
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Homework

HW Problem
Schroeder problem 2.16, p. 63.
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