

CSM Recycling Team

Hannah Davey Kimberly James Phillip Zelenak

From CSM Mission Statement

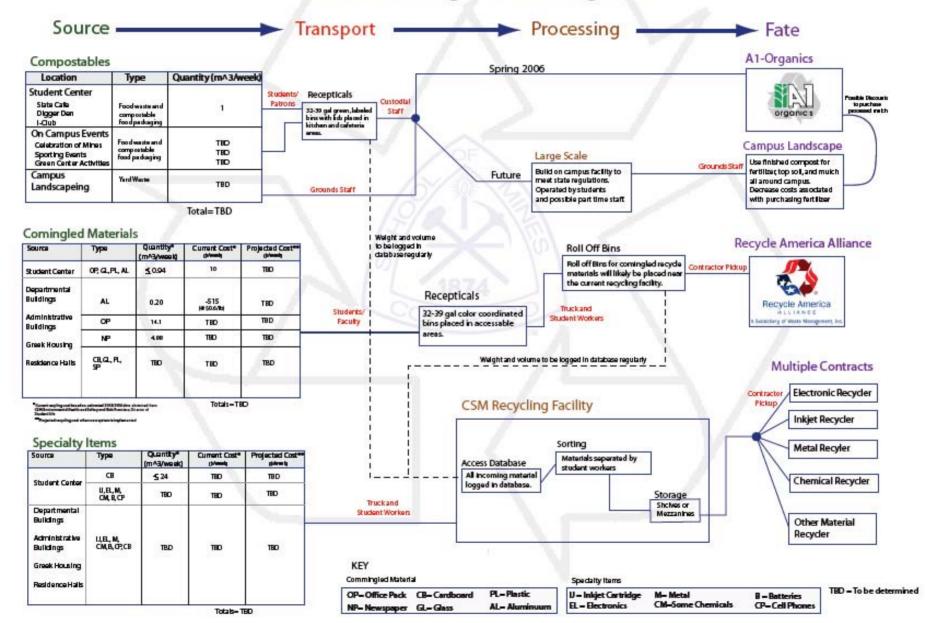
• "CSM has dedicated itself to responsible stewardship of the earth and its resources... We believe that the world faces a crisis in balancing resource availability with environmental protection and that CSM and its programs are central to the solution of that crisis."

Requirements

- Create one efficient infrastructure
- Low initial cost
- Higher quantity of recycling/ determine total diversion
- Self-sustaining
- Efficient space usage
- More types of recycling

Constraints

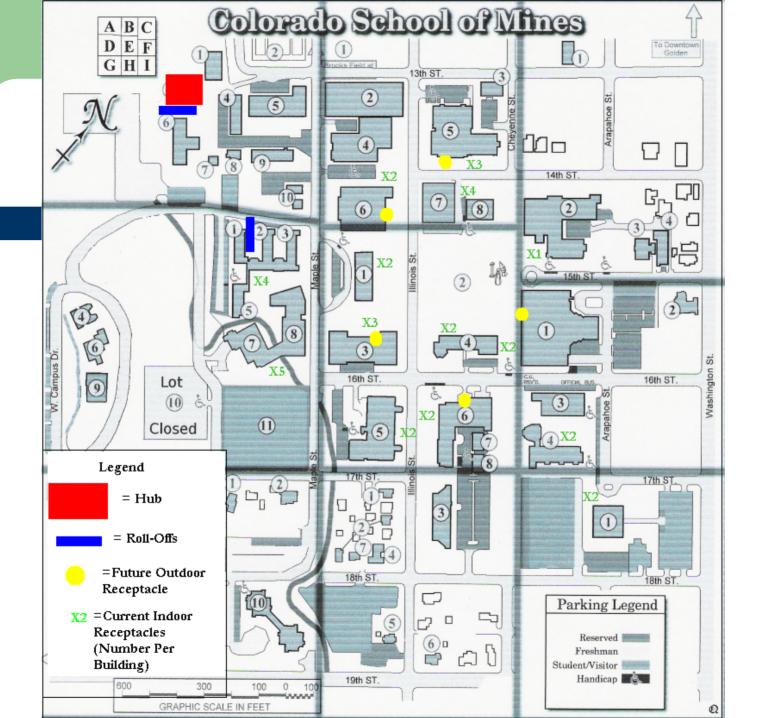
- Costs
 - Funds from Sustainability committee
 - Past supporters of EPICS
- Limited Space



Decision Criteria

- Receptacles: obvious, appealing, and easy to use
- Contractors: fewest number possible/ closest location
- Waste Processing: lease amount done on campus
- Divergence: reduce the most amount sent to landfills

Colorado School of Mines Recycling Process Design Block Diagram



Receptacles

- Description
 - Matching Vertical Facing Signage
 - Color coded
 - Each set up includes waste and commingled

Locations

- Indoors and Outdoors
- At least one in each building
- See map

Receptacles (cont.)

Testing

Small Scale Recycling Assessment

Labor

- Past usage
 - Hand sorting materials
 - Delivering materials to contractors
 - Collect materials from campus buildings

- Future usage
 - Collect materials from campus buildings
 - Weigh material and enter into data base

NO ADDITIONAL LABOR REQUIRED

EHS

- Eight vendors
- Recycles aluminum, paper, cardboard, and HTRI

Student Life

- Plastic, aluminum, newspaper, some glass
- Uses Waste Management

Non-Compostable Waste Processing: Proposed Solution

Constraints:

- Cost -> Minimize on-campus processing
- Criteria:
 - Maximize quantity and types of waste recycled
- Solution:
 - Use a single-stream waste processing contractor
 - Send all HTRI to Rooney Road

Non-Compostable Waste Processing: Proposed Solution

Contractor	Items in Commingled Stream	Processing Required at Hub	Serves Golden?	Commercial Contracts?
Allied Waste (BFI)	Pl, Al, G, C	Very Much	Yes	Yes
Ecocycle	OP, Pl, G, Al, C, P	None	No	Yes
EDS	OP, Al, Pl, P	None	Yes	No
Recycle America				
(Waste				
Management)	OP,Al, Pl, C, G, P	None	Yes	Yes

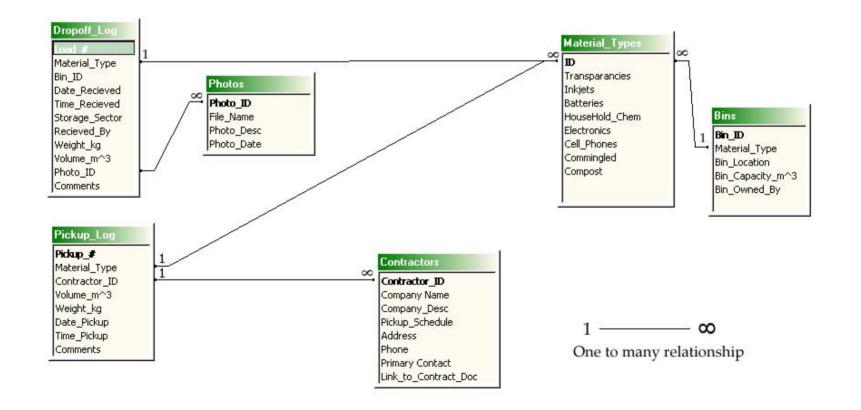
Key:

OP-Office Pack Al-Aluminum

Pl-Plastic C-Cardboard

G-Glass P-Newspaper and other paper

Non-Compostable Waste Processing: Proposed Solution


- Combining the two existing programs under a single Recycle America contract would probably reduced fixed costs
- EHS will need one or two additional commingled roll-offs
- Call for a pick up when roll-offs are full, instead of using a set schedule
- Quarterly weighing to calculate diversion

Recycling Hub

- Space maximization
 - Install shelves
 - Move rollaways
- Self drop-off for hard-to-recycle items

Central Hub - Data Processing

Why Compost?

- Decreases amount of material being land filled (increases diversion)
- Cost Savings
 - Reduces number of loads CSM pays to take to landfill
 - Reduces cost of purchasing compost and fertilizer for campus landscaping
- Educational value
 - Chemistry
 - Microbiology
 - Environmental Engineering
 - Civil Engineering

Composting Sources

- Slate Café
- I-Club
- Diggers Den
- On Campus Events
 - Sporting Events
 - Student Activities
- Students and Faculty

Composting Assessment

- 1 Day, Slate Café Assessment
- Advertise
- Setup
- Monitor
- Educate
- Measure and weigh
- Transport
- Analysis

Partnership

Lost Antlers Facility, HWY93

- Partnership with A-1 Organics
 - Return of material
- Contract with Eco-cycle to transport
- Advantages
 - Quick way to increase diversion
- Disadvantages
 - Expensive
 - Little or no design engineering

Compost Action Plan

- Block diagram
- User instructions
- ARAMARK
 - Set aside compostables at on campus events
 - Suggest zero waste solutions
- CSM Earthworks Club / student workers
 - On Campus events → composting system

Full scale on-campus compost facility

- Must meet all state regulations
- Advantages
 - Large amount of engineering design
 - Many educational opportunities
- Disadvantages
 - High initial cost investment
 - High level of maintenance required
 - May not have enough material to justify

Budget

- Total cost of project = \$3000
- 80% receptacle costs

Public Relations

- Colorado Association for Recycling
- Improve Student Awareness
 - Brunton
 - Website
 - Posters
- Student Fee
- Sponsorship

