
Stability for Gaussian beams in 
resonators 

•  A stable resonator mode is one that repeats itself 
on each round trip 
–  Amplitude and phase are matched 

–  Since    q0 must be complex (w is finite)  
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Stability for Gaussian beams in 
resonators 

•  We know: 
•  And, since det(M) = 1 

•  Stability condition:   

A − D( )2 + 4BC < 0
AD − BC = 1

A − D( )2 + 4BC = A − D( )2 + 4 AD −1( )
= A2 − 2AD + D2 + 4AD − 4

= A + D( )2 − 4 < 0
A + D( )2
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If this condition is satisfied, 
curvature of each end 
mirror matches wavefront 
curvature.   



2 mirror cavity stability 
•  Important example 

–  many resonators can be mapped to a 2 mirror cavity 
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Stability for 2 mirror resonator 
•  Stability condition: 

–  Evaluate A and D from round-trip matrix  

A = 1− L f2
D = − L f1 + 1− L f1( ) 1− L f2( )
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2 mirror stability and the stability map 
•  Cavity is stable if  −1< 2g1g2 −1<1−1< A + D

2
<1

0 ≤ g1g2 ≤1

2nd and 4th quadrants:  
Negative branch: g1 g2 < 0 

One center of curvature 
inside resonator 

focal point inside resonator 

1st and 3rd quadrants:  
Positive branch: 

0 < g1 g2 < 1 stable  
g1 g2 > 1 unstable 

No focal point inside resonator 

g1 = 1−
L
R1

g2 = 1−
L
R2

Stable in shaded regions  
Unstable in white regions 



Boundaries of stability 
•  Easily identified stable resonators 

are actually at edge of stabilty 
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Determining beam sizes 
•  From q parameter 

–  For stable mode: 

–  And 

–  So 

–  Which w is this? It is at the start/end position of the 
ABCD     
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Beam waist is where Re[1/q0]=0 

For curved end mirror, split: 

Then mode is collimated at end. 



Symmetric cavities 
•  At end mirror, wavefront curvature matches 

surface of mirror. 
–  Plano end mirror: waist at mirror 
–  Symmetric cavity (R1=R2, g1=g2): waist location at 

center. Can fully specify mode w/o ABCD. 
•  Use Gaussian beam equations: 
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Confocal cavity 
•  Symmetric cavity, focal points overlap 

–  Cavity length is equal to the confocal parameter 
–  Spot size: 

–  Confocal cavity has only ~40% variation of mode size 
along cavity 

–  Least sensitivity to angular misalignment.  
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Scanning Fabry-Perot interferometer 
•  Confocal resonator 

•  Mode-matching: make input beam 
identical to desired output beam 
–  Set initial beam size and focusing lens  

Transmitted beams 

Look for beam overlap 
 
See fringes: transmission 
through curved mirrors 
makes beams diverge 



Example: 2GHz FP 
•  Free spectral range = 2GHz 

–  Cavity length L = 7.5cm 
–  Mode waist radius: 
    
    w0 ~ 87um (for 632.8nm) 
–  Output mode waist radius: 
–  In general, resonant frequency is different for higher-

order modes. If confocal FP is well-aligned, all even 
modes are degenerate, and odd modes are midway 
between TEM00 mode frequencies.  
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Near-planar and concentric limits 
•  Near-planar: R very large, >> L 

–  Large, constant mode size. sensitive to angle misalignment 
•  Near-concentric: L ~ 2R 

–  Let L = 2R – δL 

–  Small mode in center, large mode at curved mirrors 
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In general, position on stability map 
controls mode size throughout cavity.  



Higher-order resonator modes 
–  Higher-order resonator modes follow the Hermite-

Gaussian (or Laguerre-Gaussian) funcitons 

ηlm = (1+ l +m) tan−1 z
zR

⎛
⎝⎜

⎞
⎠⎟

E x, y, z( ) = A0e− i k z−ηlm z( )( ) w0
w z( ) e

− x
2+y2

w2 z( )Hl
2x

w(z)
⎛

⎝⎜
⎞

⎠⎟
Hm

2y
w(z)

⎛

⎝⎜
⎞

⎠⎟
e
− i
k x2+y2( )
2R z( )

R(z) is independent of mode order 

Resonant frequencies depend on 
mode indices.  
 
Extent of field is larger as mode 
index increases – more diffraction 
loss.  



Eigenvalues for high-order standing 
waves 

•  High-order modes generally have different 
resonant frequencies 

–  2 mirror resonator:  

–  Confocal:  

νnlm = c
2L

n + 1+ l +m
π

⎛
⎝⎜

⎞
⎠⎟ cos

−1 ± AD( )⎛
⎝⎜

⎞
⎠⎟

νnlm = c
2L

n + 1+ l +m
π

⎛
⎝⎜

⎞
⎠⎟ cos

−1 ± g1g2( )⎛
⎝⎜

⎞
⎠⎟

+ if g1 and g2 > 0 

- if g1 and g2 < 0 

νnlm = c
4L

2n + 1+ l +m( )( )
g1 = g2 = 0 

Even modes are degenerate 
Odd modes degenerate 



Resonator stability analysis 
•  Resonators are designed under different 

constraints and can be optimized 
•  Plot a stability parameter to show stable zone(s) 

of operation 
–  Stability condition: 
–  By convention to plot s parameter:  
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Parameter is always positive in stable 
zone 



Focusing resonator 

Nearly hemispherical resonator 
•  large mode on left 
•  Laser rod acts as aperture to limit TEM00 operation 
•  Second aperture to clean up beam 



Convex-concave resonator 

Weak thermal lensing in rod 
•  Small spot on convex mirror 
•  Too intense for pulsed operation 



Internal telescope resonators 



Astigmatic compensation 



Mechanically-stable resonator design 


