Classical Vector Spaces

Linear Spaces Defined by $A \in \mathbb{R}^{m \times n}$

February 2, 2010

Scott Strong

sstrong@mines.edu

Colorado School of Mines

Overview/Keywords/References

Advanced Engineering Mathematics
Linear Vector Spaces : Basis, Dimension, Null, Column and Row-Spaces

Reference Text: EK 7.4, 7.9
Example: Rank-Nullity Theorem

- See Also:
- Lecture Notes : 05.LN.Introduction to Linear Vector Spaces
- Start:
. Homework Two

Before We Begin

Quote of Slide Set Two

The Dude: Yeah, my thinking about the case, man, it had become uptight. Yeah.

The Big Lebowski : Cohen Brothers (1998)

Assumptions - Part Ie

At this point it is assumed that you have studied the system of linear equations, $\mathbf{A x}=\mathbf{b}$, by finding its pivot structure through row-reduction. Specifically, one should have reached the following conclusions:

- If $\mathbf{A} \in \mathbb{R}^{m \times n}$ then $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}$ and the following statements are equivalent:
- A has a pivot in every row
- $\mathbf{A x}=\mathbf{b}$ is solvable for every $\mathbf{b} \in \mathbb{R}^{m}$
- Every $\mathbf{b} \in \mathbb{R}^{m}$ can be written as a linear combination of the columns of \mathbf{A}
- The set of m-many hyper-planes simultaneously intersect for at least one point in \mathbf{R}^{n}

Assumptions - Part II

- Underdetermined Systems : If $m<n$ for $\mathbf{A} \in \mathbb{R}^{m \times n}$ then we say the system is underdetermined.
- If an underdetermined system has a solution then this solution cannot be unique.
- Overdetermined Systems : If $m>n$ for $\mathbf{A} \in \mathbb{R}^{m \times n}$ then we say the system is overdetermined.
- An overdetermined system cannot have a solution for every $\mathbf{b} \in \mathbb{R}^{m}$.
- Square Systems : If $m=n$ for $\mathbf{A} \in \mathbb{R}^{m \times n}$ then we say the system is square.
- It is possible for a square system to have a unique solution for every $\mathbf{b} \in \mathbb{R}^{n}$.

Assumptions - Part III

Square systems are particularly interesting since there is the possibility of existence and uniqueness for every $\mathbf{b} \in \mathbb{R}^{n}$. The following statements are equivalent and, when taken together, is typically called the invertible matrix theorem (IMT):

- \mathbf{A} is an invertible matrix
- \mathbf{A}^{-1} exists
- A ~I
- A solution to $\mathbf{A} \mathbf{x}=\mathbf{b}$ exists and this solution is $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$
- The hyper-planes intersect at only one point in \mathbb{R}^{n}
- Every $\mathbf{b} \in \mathbb{R}^{n}$ can be written as a linear combination of the columns from \mathbf{A}
- $\operatorname{det}(\mathbf{A}) \neq 0$

Definitions - Part I

Since not every system will have square coefficient data a more general construct is required to discuss solubility of linear systems. This construct will use the following definitions:

- Linear Combination : We say that $\mathbf{b} \in \mathbb{R}^{m}$ is a linear combination of vectors from $S=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \ldots, \mathbf{a}_{n}\right\}$ if there exist scalars $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ such that,

$$
\begin{equation*}
\mathbf{b}=\sum_{i=1}^{n} x_{i} \mathbf{a}_{i}=x_{i} \mathbf{a}_{i}=\mathbf{A x} \tag{1}
\end{equation*}
$$

- The set of all such \mathbf{b} defines the spanning set of S

$$
\begin{equation*}
\operatorname{span}(S)=\left\{\mathbf{b} \in \mathbb{R}^{m}: \mathbf{b}=\sum_{i=1}^{n} x_{i} \mathbf{a}_{i}\right\} \tag{2}
\end{equation*}
$$

Definitions - Part II

Of the vectors in S it is possible that not all of them are needed to represent every element in $\operatorname{span}(S)$. In order to determine those vectors from S needed to represent every element in $\operatorname{span}(S)$ we define:

- Linear Independence : We say that a set of vectors $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots \mathbf{v}_{k}\right\}$ forms a linearly independent set if and only if

$$
\begin{equation*}
\mathbf{0}=\sum_{i=1}^{k} c_{i} \mathbf{v}_{i}=\mathbf{V} \mathbf{c} \tag{3}
\end{equation*}
$$

has only the trivial solution $\mathbf{c}=\mathbf{0}$.

Definitions - Part HI

Spanning sets are an example of a so-called 'vector-space' and since every nontrivial spanning set contains an infinite amount amount of vectors we must define some way to characterize different spanning sets. To do this we define the following:

- Basis : Given a spanning space we define a basis for this space to be any collection of linearly independent vectors, from the space, that spans the space.
- Dimension : Given a spanning space we define the dimension of this space to be the number of vectors in any basis for this space.
Key Point: Any two vector spaces, which have the same dimension are structurally identical.

Definitions - Part IV

The previous terminology now allows us to define the following spaces, which are important to the study of $\mathbf{A x}=\mathbf{b}$.

- Null-Space : Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ we define the null-space of $\mathbf{A}, \operatorname{Nul}(\mathbf{A})$, to be the set of all solutions to $\mathbf{A x}=\mathbf{0}$.
- The null-space is a vector space.
- The null-space describes how the linear objects simultaneously intersect.
- A basis for the null-space is found by explicitly solving the homogeneous equation.
- The dimension of the null-space is the number of free-variables in the system.

Definitions - Part V

- Column-Space : Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ we define the column-space of $\mathbf{A}, \operatorname{Col}(\mathbf{A})$, to be the space of all linear combinations of the columns of \mathbf{A}.
- The column-space is a vector space.
- The column-space describes the set of all inhomogeneous vectors for which $\mathbf{A x}=\mathbf{b}$ is solvable.
- A basis for the column-space is the set of linearly independent columns from \mathbf{A}.
- The dimension of the column-space is the number of linearly independent columns of \mathbf{A}.
- Since row-reduction does not change the solution to a linear system it does not change dependency relations. That is, if $\mathbf{A x}=\mathbf{0}$ has only the trivial solution and $\mathbf{A} \sim \mathbf{B}$ then $\mathbf{B x}=\mathbf{0}$ has only the trivial solution.

Definitions - Part VI

- Row-Space : Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ we define the row-space of $\mathbf{A}, \operatorname{Row}(\mathbf{A})$, to be the space of all linear combinations of the rows of \mathbf{A}.
- A basis for the row-space is the set of linearly independent rows from \mathbf{A}.
- The dimension of the row-space is the number of linearly independent rows of \mathbf{A}.
- Row-reduction is reversible. That is, if $\mathbf{A} \sim \mathbf{B}$ then the linearly independent rows of \mathbf{B} can be used as a basis for $\operatorname{Row}(\mathbf{A})$.

General Framework for $\mathbf{A x}=\mathbf{b}$

Using the idea of vector spaces we now have the following statements, which completely characterizes the general linear problem $\mathbf{A}_{m \times n} \mathbf{x}_{n \times 1}=\mathbf{b}_{m \times 1}$:

- $\mathbf{A x}=\mathbf{b}$ is solvable if and only if $\mathbf{b} \in \operatorname{Col}(\mathbf{A})$
- If $\mathbf{A x}=\mathbf{b}$ is solvable and the dimension of $\operatorname{Nul}(\mathbf{A})$ is zero then $\mathbf{A x}=\mathbf{b}$ is uniquely solvable.
- Rank-Nullity Theorem: Rank $\mathbf{A}+\operatorname{dim}(\operatorname{Nul}(\mathbf{A}))=n$ where Rank $\mathbf{A}=\operatorname{dim}(\operatorname{Col}(\mathbf{A}))=\operatorname{dim}(\operatorname{Row}(\mathbf{A}))$.

Invertible Matrix Theorem : Redux

With this framework we can make the following additions to the IMT:

- $\mathbf{A}_{n \times n}$ is an invertible matrix
- $\operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \ldots, \mathbf{a}_{n}\right\}=\mathbb{R}^{n}$
- A basis for the column-space of \mathbf{A} is a basis for \mathbb{R}^{n}
- Rank $\mathbf{A}=n$
- The dimension of the null-space of \mathbf{A} is zero
- $\mathbf{A x}=\mathbf{0}$ has only the trivial solution

