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Overview/Keywords/References

Advanced Engineering Mathematics Slide Set Two

Linear Vector Spaces : Basis, Dimension, Null, Column and Row-Spaces

Reference Text: EK 7.4, 7.9 Example: Rank-Nullity Theorem

• See Also:

· Lecture Notes : 05.LN.Introduction to Linear Vector Spaces

• Start:

· Homework Two
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Before We Begin

Quote of Slide Set Two

The Dude: Yeah, my thinking about the case, man, it had
become uptight. Yeah.

The Big Lebowski : Cohen Brothers (1998)
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Assumptions - Part Ie

At this point it is assumed that you have studied the system of
linear equations, Ax = b, by finding its pivot structure through
row-reduction. Specifically, one should have reached the
following conclusions:

• If A ∈ R
m×n then x ∈ R

n, b ∈ R
m and the following

statements are equivalent:

· A has a pivot in every row

· Ax = b is solvable for every b ∈ R
m

· Every b ∈ R
m can be written as a linear combination of

the columns of A
· The set of m-many hyper-planes simultaneously

intersect for at least one point in Rn
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Assumptions - Part II

• Underdetermined Systems : If m < n for A ∈ R
m×n then we

say the system is underdetermined.

· If an underdetermined system has a solution then this
solution cannot be unique.

• Overdetermined Systems : If m > n for A ∈ R
m×n then we

say the system is overdetermined.

· An overdetermined system cannot have a solution for
every b ∈ R

m.

• Square Systems : If m = n for A ∈ R
m×n then we say the

system is square.

· It is possible for a square system to have a unique
solution for every b ∈ R

n.
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Assumptions - Part III

Square systems are particularly interesting since there is the
possibility of existence and uniqueness for every b ∈ R

n. The
following statements are equivalent and, when taken together,
is typically called the invertible matrix theorem (IMT):

· A is an invertible matrix

· A−1 exists

· A ∼ I

· A solution to Ax = b exists and this solution is x = A−1b

· The hyper-planes intersect at only one point in R
n

· Every b ∈ R
n can be written as a linear combination of the

columns from A

· det(A) 6= 0
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Definitions - Part I

Since not every system will have square coefficient data a
more general construct is required to discuss solubility of
linear systems. This construct will use the following
definitions:

• Linear Combination : We say that b ∈ R
m is a linear

combination of vectors from S = {a1, a2, a3, . . . , an} if there
exist scalars x1, x2, x3, . . . , xn such that,

b =
n

∑

i=1

xiai = xiai = Ax (1)

· The set of all such b defines the spanning set of S

span(S) =

{

b ∈ R
m : b =

n
∑

i=1

xiai

}

(2)
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Definitions - Part II

Of the vectors in S it is possible that not all of them are
needed to represent every element in span(S). In order to
determine those vectors from S needed to represent every
element in span(S) we define:

• Linear Independence : We say that a set of vectors
S = {v1, v2, v3, . . . vk} forms a linearly independent set if
and only if

0 =

k
∑

i=1

civi = Vc, (3)

has only the trivial solution c = 0.
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Definitions - Part III

Spanning sets are an example of a so-called ‘vector-space’
and since every nontrivial spanning set contains an infinite
amount amount of vectors we must define some way to
characterize different spanning sets. To do this we define the
following:

• Basis : Given a spanning space we define a basis for this
space to be any collection of linearly independent vectors,
from the space, that spans the space.

• Dimension : Given a spanning space we define the
dimension of this space to be the number of vectors in any
basis for this space.

Key Point: Any two vector spaces, which have the same
dimension are structurally identical.
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Definitions - Part IV

The previous terminology now allows us to define the
following spaces, which are important to the study of Ax = b.

• Null-Space : Given A ∈ R
m×n we define the null-space of

A, Nul(A), to be the set of all solutions to Ax = 0.

· The null-space is a vector space.

· The null-space describes how the linear objects
simultaneously intersect.

· A basis for the null-space is found by explicitly solving
the homogeneous equation.

· The dimension of the null-space is the number of
free-variables in the system.
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Definitions - Part V

• Column-Space : Given A ∈ R
m×n we define the

column-space of A, Col(A), to be the space of all linear
combinations of the columns of A.

· The column-space is a vector space.

· The column-space describes the set of all
inhomogeneous vectors for which Ax = b is solvable.

· A basis for the column-space is the set of linearly
independent columns from A.

· The dimension of the column-space is the number of
linearly independent columns of A.

· Since row-reduction does not change the solution to a
linear system it does not change dependency relations.
That is, if Ax = 0 has only the trivial solution and A ∼ B
then Bx = 0 has only the trivial solution.
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Definitions - Part VI

• Row-Space : Given A ∈ R
m×n we define the row-space of

A, Row(A), to be the space of all linear combinations of the
rows of A.

· A basis for the row-space is the set of linearly
independent rows from A.

· The dimension of the row-space is the number of linearly
independent rows of A.

· Row-reduction is reversible. That is, if A ∼ B then the
linearly independent rows of B can be used as a basis
for Row(A).
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General Framework for Ax = b

Using the idea of vector spaces we now have the following
statements, which completely characterizes the general linear
problem Am×nxn×1 = bm×1:

· Ax = b is solvable if and only if b ∈Col(A)

· If Ax = b is solvable and the dimension of Nul(A) is zero
then Ax = b is uniquely solvable.

· Rank-Nullity Theorem: Rank A + dim(Nul(A)) = n where
Rank A=dim(Col(A))=dim(Row(A)).
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Invertible Matrix Theorem : Redux

With this framework we can make the following additions to
the IMT:

· An×n is an invertible matrix

· span{a1, a2, a3, . . . , an} = R
n

· A basis for the column-space of A is a basis for R
n

· Rank A = n

· The dimension of the null-space of A is zero

· Ax = 0 has only the trivial solution
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