EM waves revisited

Review of EM wave equation and plane waves
Energy and intensity in EM waves

Maxwell's Equations to wave eqn

- The induced polarization, \mathbf{P}, contains the effect of the medium:

$$
\begin{array}{ll}
\vec{\nabla} \cdot \mathbf{E}=0 & \vec{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
\vec{\nabla} \cdot \mathbf{B}=0 & \vec{\nabla} \times \mathbf{B}=\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \frac{\partial \mathbf{P}}{\partial t}
\end{array}
$$

Take the curl:

$$
\vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=-\frac{\partial}{\partial t} \vec{\nabla} \times \mathbf{B}=-\frac{\partial}{\partial t}\left(\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \frac{\partial \mathbf{P}}{\partial t}\right)
$$

Use the vector ID:

$$
\begin{aligned}
& \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B}) \\
& \vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=\vec{\nabla}(\vec{\nabla} \cdot \mathbf{E})-(\vec{\nabla} \cdot \vec{\nabla}) \mathbf{E}=-\vec{\nabla}^{2} \mathbf{E} \\
& \vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}} \quad \text { "Inhomogeneous Wave Equation" }
\end{aligned}
$$

Wave equation in a medium

- The induced polarization, \mathbf{P}, contains the effect of the medium:

$$
\vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}}
$$

- Sinusoidal waves of all frequencies are solutions to the wave equation
- The polarization (\mathbf{P}) is sometimes a driving term for the waves (esp in nonlinear optics). In this case the polarization determines which frequencies will occur.
- For linear response, \mathbf{P} will oscillate at the same frequency as the input.

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0} \chi \mathbf{E}
$$

- In nonlinear optics, the induced polarization is more complicated:

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0}\left(\chi^{(1)} \mathbf{E}+\chi^{(2)} \mathbf{E}^{2}+\chi^{(3)} \mathbf{E}^{3}+\ldots\right)
$$

- The extra nonlinear terms can lead to new frequencies.

Solving the wave equation: linear induced polarization

For low irradiances, the polarization is proportional to the incident field:

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0} \chi \mathbf{E}
$$

The displacement vector combines the effect of E and P

$$
\mathbf{D}=\varepsilon_{0} \mathbf{E}+\mathbf{P}=\varepsilon_{0}(1+\chi) \mathbf{E}=\varepsilon \mathbf{E}=n^{2} \mathbf{E}
$$

In this simple (and most common) case, the wave equation becomes:

$$
\begin{array}{ll}
\vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\frac{1}{c^{2}} \chi \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} & \rightarrow \vec{\nabla}^{2} \mathbf{E}-\frac{n^{2}}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0 \\
\text { Using: } \quad \varepsilon_{0} \mu_{0}=1 / c^{2} & \varepsilon_{0}(1+\chi)=\varepsilon=n^{2}
\end{array}
$$

\mathbf{D} does not always point in the same direction as \mathbf{E} :

- Birefringence: n is a function of linear polarization direction
- Optically activity: n is a function of circular polarization state
- In this case, X and ε are tensors operating on \mathbf{E} to change its direction

Vector wave equation

- The EM wave equation in vector form

$$
\vec{\nabla}^{2} \mathbf{E}-\frac{n^{2}}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0
$$

- \mathbf{E} is a vector that depends on \mathbf{r} and t
- Wave equation is actually a set of 3 equations:

$$
\begin{aligned}
& \vec{\nabla}^{2} E_{x}(\mathbf{r}, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E_{x}(\mathbf{r}, t)=0 \\
& \vec{\nabla}^{2} E_{y}(\mathbf{r}, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E_{y}(\mathbf{r}, t)=0 \\
& \vec{\nabla}^{2} E_{z}(\mathbf{r}, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E_{z}(\mathbf{r}, t)=0
\end{aligned}
$$

Plane wave solutions for the wave equation

If we assume the solution has no dependence on x or y :

$$
\begin{aligned}
& \vec{\nabla}^{2} \mathbf{E}(z, t)=\frac{\partial^{2}}{\partial x^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial y^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z, t)=\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z, t) \\
& \rightarrow \frac{\partial^{2} \mathbf{E}}{\partial z^{2}}-\frac{n^{2}}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0
\end{aligned}
$$

The solutions are oscillating functions, for example

$$
\mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos \left(k_{z} z-\omega t\right)
$$

Where $\omega=k c, \quad k=2 \pi n / \lambda, \quad v_{p h}=c / n$
This is a linearly polarized wave.

Complex notation for waves

- Write cosine in terms of exponential

$$
\mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos (k z-\omega t+\phi)=\hat{\mathbf{x}} E_{x} \frac{1}{2}\left(e^{i(k z-\omega t+\phi)}+e^{-i(k z-\omega t+\phi)}\right)
$$

- Note E-field is a real quantity.
- It is convenient to work with just one part
- We will use

$$
E_{0} e^{+i(k z-\Delta t)}
$$

- Svelto:

$$
E_{0} e^{-i(k z-\omega t)}
$$

- Then take the real part.
- No factor of 2
- In nonlinear optics, we have to explicitly include conjugate term

Wave energy and intensity

- Both E and H fields have a corresponding energy density $\left(\mathrm{J} / \mathrm{m}^{3}\right)$
- For static fields (e.g. in
) the energy density can be calculated through the work done to set up the field

$$
\rho=\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu H^{2}
$$

- Some work is required to polarize the medium
- Energy is contained in both fields, but H field can be calculated from E field

Calculating H from E in a plane wave

- Assume a non-magnetic medium

$$
\begin{aligned}
& \mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos (k z-\omega t) \\
& \vec{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}=-\mu_{0} \frac{\partial \mathbf{H}}{\partial t}
\end{aligned}
$$

- Can see \mathbf{H} is perpendicular to \mathbf{E}

$$
-\mu_{0} \frac{\partial \mathbf{H}}{\partial t}=\vec{\nabla} \times \mathbf{E}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
E_{x} & 0 & 0
\end{array}\right|=\hat{\mathbf{y}} \partial_{z} E_{x}=-\hat{\mathbf{y}} k E_{x} \sin (k z-\omega t)
$$

- Integrate on time to get \mathbf{H}-field:
$\mathbf{H}=\hat{\mathbf{y}} \int \frac{k E_{x}}{\mu_{0}} \sin (k z-\omega t) d t=\hat{\mathbf{y}} \frac{k E_{x}}{\mu_{0}}\left(\frac{-\cos (k z-\omega t)}{-\omega}\right)=\hat{\mathbf{y}} \frac{k E_{x}}{\omega \mu_{0}} \cos (k z-\omega t)$

H field from E field

- H field for a propagating wave is in phase with Efield

$$
\begin{aligned}
& \mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos (k z-\omega t) \\
& \mathbf{H}(z, t)=\hat{\mathbf{y}} \frac{k E_{x}}{\omega \mu_{0}} \cos (k z-\omega t)
\end{aligned}
$$

- Amplitudes are not independent

$$
\begin{aligned}
& H_{y}=\frac{k}{\omega \mu_{0}} E_{x} \quad k=n \frac{\omega}{c} \quad c^{2}=\frac{1}{\mu_{0} \varepsilon_{0}} \rightarrow \frac{1}{\mu_{0} c}=\varepsilon_{0} c \\
& H_{y}=\frac{n}{c \mu_{0}} E_{x}=n \varepsilon_{0} c E_{x}
\end{aligned}
$$

Energy density in a traveling EM wave

- Back to energy density, non-magnetic

$$
\begin{array}{cc}
\rho=\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu_{0} H^{2} & H=n \varepsilon_{0} c E \\
\rho=\frac{1}{2} \varepsilon_{0} n^{2} E^{2}+\frac{1}{2} \mu_{0} n^{2} \varepsilon_{0}{ }^{2} c^{2} E^{2} & \varepsilon=\varepsilon_{0} n^{2} \\
\mu_{0} \varepsilon_{0} c^{2}=1 & \\
\rho=\frac{1}{2} \varepsilon_{0} n^{2} E^{2}+\frac{1}{2} \varepsilon_{0} n^{2} E^{2}=\varepsilon_{0} n^{2} E_{0}{ }^{2} \cos ^{2}(k z-\omega t)
\end{array}
$$

Equal energy in both components of wave

Cycle-averaged energy density

- Optical oscillations are faster than detectors
- Average over one cycle:

$$
\langle\rho\rangle=\varepsilon_{0} n^{2} E_{0}{ }^{2} \frac{1}{T} \int_{0}^{T} \cos ^{2}\left(k_{z} z-\omega t\right) d t
$$

- Graphically, we can see this should $=1 / 2$

- Regardless of position z

$$
\langle\rho\rangle=\frac{1}{2} \varepsilon_{0} n^{2} E_{0}^{2}
$$

Intensity and the Poynting vector

- Intensity is an energy flux ($\mathrm{J} / \mathrm{s} / \mathrm{cm}^{2}$)
- In EM the Poynting vector give energy flux

$$
\mathbf{S}=\mathbf{E} \times \mathbf{H}
$$

- For our plane wave,

$$
\begin{aligned}
\mathbf{S} & =\mathbf{E} \times \mathbf{H}=E_{0} \cos \left(k_{z} z-\omega t\right) n \varepsilon_{0} c E_{0} \cos \left(k_{z} z-\omega t\right) \hat{\mathbf{x}} \times \hat{\mathbf{y}} \\
\mathbf{S} & =n \varepsilon_{0} c E_{0}^{2} \cos ^{2}\left(k_{z} z-\omega t\right) \hat{\mathbf{z}} \\
& -\mathbf{S} \text { is along } \mathbf{k}
\end{aligned}
$$

- Time average: $\mathbf{S}=\frac{1}{2} n \varepsilon_{0} c E_{0}^{2} \hat{\mathbf{z}}$
- Intensity is the magnitude of \mathbf{S}

$$
I=\frac{1}{2} n \varepsilon_{0} c E_{0}^{2}=\frac{c}{n} \rho=V_{\text {phase }} \cdot \rho \quad \text { Photon flux: } F=\frac{I}{h v}
$$

General 3D plane wave solution

- Assume separable function

$$
\begin{aligned}
& \mathbf{E}(x, y, z, t) \sim f_{1}(x) f_{2}(y) f_{3}(z) g(t) \\
& \vec{\nabla}^{2} \mathbf{E}(z, t)=\frac{\partial^{2}}{\partial x^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial y^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z, t)=\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}(z, t)
\end{aligned}
$$

- Solution takes the form:

$$
\begin{aligned}
& \mathbf{E}(x, y, z, t)=\mathbf{E}_{0} e^{i k_{x} x} e^{i k_{y} y} e^{i k_{z} z} e^{-i \omega t}=\mathbf{E}_{0} e^{i\left(k_{x} x+k_{y}, y+k_{z} z\right)} e^{-i \omega t} \\
& \mathbf{E}(x, y, z, t)=\mathbf{E}_{0} e^{i(\mathbf{k}-\omega t)}
\end{aligned}
$$

- Now k -vector can point in arbitrary direction
- With this solution in W.E.:

$$
n^{2} \frac{\omega^{2}}{c^{2}}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\mathbf{k} \cdot \mathbf{k}
$$

Valid even in waveguides and resonators

Grad and curl of 3D plane waves

- Simple trick:

$$
\nabla \cdot \mathbf{E}=\partial_{x} E_{x}+\partial_{y} E_{y}+\partial_{z} E_{z}
$$

- For a plane wave,

$$
\nabla \cdot \mathbf{E}=i\left(k_{x} E_{x}+k_{y} E_{y}+k_{z} E_{z}\right)=i(\mathbf{k} \cdot \mathbf{E})
$$

- Similarly,

$$
\nabla \times \mathbf{E}=i(\mathbf{k} \times \mathbf{E})
$$

- Consequence: since $\nabla \cdot \mathbf{E}=0, \mathbf{k} \perp \mathbf{E}$
- For a given \mathbf{k} direction, \mathbf{E} lies in a plane
- E.g. \mathbf{x} and \mathbf{y} linear polarization for a wave propagating in \mathbf{z} direction

Writing electric field expressions

- Write an expression for a complex E-field as shown:

$$
\mathbf{E}(y, z, t)=E_{0}[\hat{\mathbf{y}} \cos \theta-\hat{\mathbf{z}} \sin \theta] e^{i(k y \sin \theta+k z \cos \theta-\omega t)}
$$

