
EM waves revisited 
Review of EM wave equation and plane waves 

Energy and intensity in EM waves 

 



Maxwell's Equations to wave eqn 
•  The induced polarization, P,  contains the effect of the medium:  
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Take the curl:

“Inhomogeneous Wave Equation”
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Use the vector ID:

 A × B ×C( ) = B A ⋅C( )−C A ⋅B( )
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Wave equation in a medium 
•  The induced polarization, P,  contains the effect of the medium:  

•  Sinusoidal waves of all frequencies are solutions to the wave equation 
•  The polarization (P) is sometimes a driving term for the waves (esp in 
nonlinear optics). In this case the polarization determines which 
frequencies will occur. 
•  For linear response, P will oscillate at the same frequency as the input. 

•  In nonlinear optics, the induced polarization is more complicated: 

•  The extra nonlinear terms can lead to new frequencies.    
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  P E( ) = ε0χE

  
P E( ) = ε0 χ (1)E+ χ (2)E2 + χ (3)E3 + ...( )



Solving the wave equation: 
            linear induced polarization 
For low irradiances, the polarization is proportional to the incident field:

  P E( ) = ε0χE

 

In this simple (and most common) case, the wave equation becomes:

Using:   ε0µ0 = 1/ c2
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The displacement vector combines the effect of E and P

D does not always point in the same direction as E: 
•  Birefringence: n is a function of linear polarization direction
•  Optically activity: n is a function of circular polarization state
•  In this case, χ and ε are tensors operating on E to change its direction



Vector wave equation 
•  The EM wave equation in vector form 

•  E is a vector that depends on r and t  
•  Wave equation is actually a set of 3 equations: 
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Plane wave solutions for the wave equation 

 This is a linearly polarized wave.

Where
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If we assume the solution has no dependence on x or y:

  ω = k c, k = 2πn / λ, vph = c / n
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The solutions are oscillating functions, for example

E z,t( ) = x̂Ex cos kzz −ωt( )



Complex notation for waves 
•  Write cosine in terms of exponential 

–  Note E-field is a real quantity.  
–  It is convenient to work with just one part 

•  We will use  
•  Svelto:  

–  Then take the real part.   
•  No factor of 2 
•  In nonlinear optics, we have to explicitly include 

conjugate term 
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Wave energy and intensity 

•  Both E and H fields have a corresponding 
energy density (J/m3) 
–  For static fields (e.g. in capacitors) the energy 

density can be calculated through the work 
done to set up the field 

 

–  Some work is required to polarize the medium 

–  Energy is contained in both fields, but H field 
can be calculated from E field 
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Calculating H from E in a plane wave 
•  Assume a non-magnetic medium 

–  Can see H is perpendicular to E 

–  Integrate on time to get H-field: 

E z,t( ) = x̂Ex cos kz −ωt( )
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H field from E field 
•  H field for a propagating wave is in phase with E-

field 

•  Amplitudes are not independent 
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Energy density in a traveling EM wave 
•  Back to energy density, non-magnetic 
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Equal energy in both components of wave 
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Cycle-averaged energy density 
•  Optical oscillations are faster than detectors 
•  Average over one cycle: 

–  Graphically, we can see this should = ½  

–  Regardless of position z 
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Intensity and the Poynting vector 
•  Intensity is an energy flux (J/s/cm2) 
•  In EM the Poynting vector give energy flux 

–  For our plane wave, 

  
–  S is along k 

•  Time average: 
•  Intensity is the magnitude of S  
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Photon flux: 



General 3D plane wave solution 
•  Assume separable function 

 
•  Solution takes the form: 

 
– Now k-vector can point in arbitrary direction 

•  With this solution in W.E.: 
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Grad and curl of 3D plane waves 
•  Simple trick: 

– For a plane wave, 

– Similarly, 

•  Consequence: since 
–  For a given k direction, E lies in a plane 
–  E.g. x and y linear polarization for a wave propagating 

in z direction   

∇⋅E = ∂x Ex + ∂y Ey + ∂z Ez

∇⋅E = i kxEx + kyEy + kzEz( ) = i k ⋅E( )

∇×E = i k ×E( )
∇⋅E = 0, k ⊥ E



Writing electric field expressions 
 
•  Write an expression for a complex E-field as shown: 
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E y, z,t( ) = E0 ŷcosθ − ẑsinθ[ ]ei kysinθ+kzcosθ−ωt( )


