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so that 
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c) The maximum velocity is attained when the total energy of the oscillator is equal to the 
kinetic energy. Therefore, 
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or, 

  max 30 cm/secv   (4) 

3-2. 

a) The statement that at a certain time 1t t  the maximum amplitude has decreased to one-

half the initial value means that 
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Since 1 10 sect  , 

  2 16.9 10  sec     (4) 

b) According to Eq. (3.38), the angular frequency is 
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where, from Problem 3-1, 1
0 10 sec  . Therefore, 
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so that 
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which can be written as 

   1 0 1     (8) 

where 

  52.40 10    (9) 

That is, 1  is only slightly different from 0 . 

c) The decrement of the motion is defined to be 1e  where 1 11  . Then, 

  1 1.0445e  

3-7.  

   

Let A be the cross-sectional area of the floating body, bh  its height, sh  the height of its 

submerged part; and let  and 0  denote the mass densities of the body and the fluid, 

respectively. 

The volume of displaced fluid is therefore sV Ah . The mass of the body is bM Ah . 



There are two forces acting on the body: that due to gravity (Mg), and that due to the fluid, 

pushing the body up ( 0 0 sgV gh A    ). 

The equilibrium situation occurs when the total force vanishes: 
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which gives the relation between sh  and bh : 
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For a small displacement about the equilibrium position ( s sh h x  ), (1) becomes 

   0b b sMx Ah x gAh g h x A       (3) 

Upon substitution of (1) into (3), we have 
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Thus, the motion is oscillatory, with an angular frequency 
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where use has been made of (2), and in the last step we have multiplied and divided by A. The 
period of the oscillations is, therefore, 
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Substituting the given values, 0 18 s  . 

3-11. The total energy of a damped oscillator is 
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Substituting (2) and (3) into (1), we have 
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Rewriting (4), we find the expression for E(t): 
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Taking the derivative of (5), we find the expression for 
dE

dt
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The above formulas for E and dE dt  reproduce the curves shown in Figure 3-7 of the text. To 

find the average rate of energy loss for a lightly damped oscillator, let us take 0  . This 

means that the oscillator has time to complete some number of periods before its amplitude 

decreases considerably, i.e. the term 2 te   does not change much in the time it takes to complete 
one period. The cosine and sine terms will average to nearly zero compared to the constant term 

in dE dt , and we obtain in this limit 
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3-13. For the case of critical damping, 0  . Therefore, the equation of motion becomes 
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If we assume a solution of the form 
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Substituting (3) into (1), we find 
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which is just Eq. (3.43). 

3-14. For the case of overdamped oscillations, x(t) and  x t  are expressed by 
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Using (4) to rewrite (1) and (2), we have 
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