3-1.
a)

$$
v_{0}=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}=\frac{1}{2 \pi} \sqrt{\frac{10^{4} \text { dyne } / \mathrm{cm}}{10^{2} \mathrm{gram}}}=\frac{10}{2 \pi} \sqrt{\frac{\mathrm{gram} \cdot \mathrm{~cm}}{\mathrm{sec}^{2} \cdot \mathrm{~cm}}} \frac{\mathrm{gram}}{2 \pi}=\frac{10}{2 \mathrm{sec}^{-1}}
$$

or,

$$
\begin{gather*}
v_{0} \cong 1.6 \mathrm{~Hz} \tag{1}\\
\tau_{0}=\frac{1}{v_{0}}=\frac{2 \pi}{10} \mathrm{sec}
\end{gather*}
$$

or,

$$
\begin{equation*}
\tau_{0} \cong 0.63 \mathrm{sec} \tag{2}
\end{equation*}
$$

b)

$$
E=\frac{1}{2} k A^{2}=\frac{1}{2} \times 10^{4} \times 3^{2} \text { dyne-cm }
$$

so that

$$
\begin{equation*}
E=4.5 \times 10^{4} \mathrm{erg} \tag{3}
\end{equation*}
$$

c) The maximum velocity is attained when the total energy of the oscillator is equal to the kinetic energy. Therefore,

$$
\begin{aligned}
\frac{1}{2} m v_{\max }^{2} & =4.5 \times 10^{4} \mathrm{erg} \\
\mathrm{v}_{\max } & =\sqrt{\frac{2 \times 4.5 \times 10^{4}}{100}}
\end{aligned}
$$

or,

$$
\begin{equation*}
v_{\max }=30 \mathrm{~cm} / \mathrm{sec} \tag{4}
\end{equation*}
$$

3-2.

a) The statement that at a certain time $t=t_{1}$ the maximum amplitude has decreased to onehalf the initial value means that

$$
\begin{equation*}
\left|x_{e n}\right|=A_{0} e^{-\beta t_{1}}=\frac{1}{2} A_{0} \tag{1}
\end{equation*}
$$

or,

$$
\begin{equation*}
e^{-\beta t_{1}}=\frac{1}{2} \tag{2}
\end{equation*}
$$

so that

$$
\begin{equation*}
\beta=\frac{\ln 2}{t_{1}}=\frac{0.69}{t_{1}} \tag{3}
\end{equation*}
$$

Since $t_{1}=10 \mathrm{sec}$,

$$
\begin{equation*}
\beta=6.9 \times 10^{-2} \mathrm{sec}^{-1} \tag{4}
\end{equation*}
$$

b) According to Eq. (3.38), the angular frequency is

$$
\begin{equation*}
\omega_{1}=\sqrt{\omega_{0}^{2}-\beta^{2}} \tag{5}
\end{equation*}
$$

where, from Problem 3-1, $\omega_{0}=10 \mathrm{sec}^{-1}$. Therefore,

$$
\begin{align*}
\omega_{1} & =\sqrt{(10)^{2}-\left(6.9 \times 10^{-2}\right)^{2}} \\
& \cong 10\left[1-\frac{1}{2}(6.9)^{2} \times 10^{-6}\right] \mathrm{sec}^{-1} \tag{6}
\end{align*}
$$

so that

$$
\begin{equation*}
v_{1}=\frac{10}{2 \pi}\left(1-2.40 \times 10^{-5}\right) \sec ^{-1} \tag{7}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
v_{1}=v_{0}(1-\delta) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta=2.40 \times 10^{-5} \tag{9}
\end{equation*}
$$

That is, v_{1} is only slightly different from v_{0}.
c) The decrement of the motion is defined to be $e^{\beta \tau_{1}}$ where $\tau_{1}=1 / v_{1}$. Then,

$$
e^{\beta \tau_{1}} \simeq 1.0445
$$

3-7.

Let A be the cross-sectional area of the floating body, h_{b} its height, h_{s} the height of its submerged part; and let ρ and ρ_{0} denote the mass densities of the body and the fluid, respectively.
The volume of displaced fluid is therefore $V=A h_{s}$. The mass of the body is $M=\rho A h_{b}$.

There are two forces acting on the body: that due to gravity (Mg), and that due to the fluid, pushing the body up ($-\rho_{0} g V=-\rho_{0} g h_{s} A$).

The equilibrium situation occurs when the total force vanishes:

$$
\begin{align*}
0 & =M g-\rho_{0} g V \\
& =\rho g A h_{b}-\rho_{0} g h_{s} A \tag{1}
\end{align*}
$$

which gives the relation between h_{s} and h_{b} :

$$
\begin{equation*}
h_{s}=h_{b} \frac{\rho}{\rho_{0}} \tag{2}
\end{equation*}
$$

For a small displacement about the equilibrium position $\left(h_{s} \rightarrow h_{s}+x\right)$, (1) becomes

$$
\begin{equation*}
M \ddot{x}=\rho A h_{b} \ddot{x}=\rho g A h_{b}-\rho_{0} g\left(h_{s}+x\right) A \tag{3}
\end{equation*}
$$

Upon substitution of (1) into (3), we have

$$
\begin{equation*}
\rho A h_{b} \ddot{x}=-\rho_{0} g x A \tag{4}
\end{equation*}
$$

or,

$$
\begin{equation*}
\ddot{x}+g \frac{\rho_{0}}{\rho h_{b}} x=0 \tag{5}
\end{equation*}
$$

Thus, the motion is oscillatory, with an angular frequency

$$
\begin{equation*}
\omega^{2}=g \frac{\rho_{0}}{\rho h_{b}}=\frac{g}{h_{s}}=\frac{g A}{V} \tag{6}
\end{equation*}
$$

where use has been made of (2), and in the last step we have multiplied and divided by A. The period of the oscillations is, therefore,

$$
\begin{equation*}
\tau=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{V}{g A}} \tag{7}
\end{equation*}
$$

Substituting the given values, $\tau \simeq 0.18 \mathrm{~s}$.

3-11. The total energy of a damped oscillator is

$$
\begin{equation*}
E(t)=\frac{1}{2} m \dot{x}(t)^{2}+\frac{1}{2} k x(t)^{2} \tag{1}
\end{equation*}
$$

where

$$
\begin{gather*}
x(t)=A e^{-\beta t} \cos \left(\omega_{1} t-\delta\right) \tag{2}\\
\dot{x}(t)=A e^{-\beta t}\left[-\beta \cos \left(\omega_{1} t-\delta\right)-\omega_{1} \sin \left(\omega_{1} t-\delta\right)\right] \tag{3}\\
\omega_{1}=\sqrt{\omega_{0}^{2}-\beta^{2}}, \quad \omega_{0}=\sqrt{\frac{k}{m}}
\end{gather*}
$$

Substituting (2) and (3) into (1), we have

$$
\begin{array}{r}
E(t)=\frac{A^{2}}{2} e^{-2 \beta t}\left[\left(m \beta^{2}+k\right) \cos ^{2}\left(\omega_{1} t-\delta\right)+m \omega_{1}^{2} \sin ^{2}\left(\omega_{1} t-\delta\right)\right. \tag{4}\\
\left.+2 m \beta \omega_{1} \sin \left(\omega_{1} t-\delta\right) \cos \left(\omega_{1} t-\delta\right)\right]
\end{array}
$$

Rewriting (4), we find the expression for $E(t)$:

$$
\begin{equation*}
E(t)=\frac{m A^{2}}{2} e^{-2 \beta t}\left[\beta^{2} \cos 2\left(\omega_{1} t-\delta\right)+\beta \sqrt{\omega_{0}^{2}-\beta^{2}} \sin 2\left(\omega_{1} t-\delta\right)+\omega_{0}^{2}\right] \tag{5}
\end{equation*}
$$

Taking the derivative of (5), we find the expression for $\frac{d E}{d t}$:

$$
\begin{align*}
& \frac{d E}{d t}=\frac{m A^{2}}{2} e^{-2 \beta t}\left[\left(2 \beta \omega_{0}^{2}-4 \beta^{3}\right) \cos 2\left(\omega_{1} t-\delta\right)\right. \tag{6}\\
& \\
& \left.-4 \beta^{2} \sqrt{\omega_{0}^{2}-\beta^{2}} \sin 2\left(\omega_{1} t-\delta\right)_{0}-2 \beta \omega^{2}\right]
\end{align*}
$$

The above formulas for E and $d E / d t$ reproduce the curves shown in Figure 3-7 of the text. To find the average rate of energy loss for a lightly damped oscillator, let us take $\beta \ll \omega_{0}$. This means that the oscillator has time to complete some number of periods before its amplitude decreases considerably, i.e. the term $e^{-2 \beta t}$ does not change much in the time it takes to complete one period. The cosine and sine terms will average to nearly zero compared to the constant term in $d E / d t$, and we obtain in this limit

$$
\frac{d E}{d t} \simeq-m \beta \omega_{0}^{2} A^{2} e^{-2 \beta t}
$$

3-13. For the case of critical damping, $\beta=\omega_{0}$. Therefore, the equation of motion becomes

$$
\begin{equation*}
\ddot{x}+2 \beta \dot{x}+\beta^{2} x=0 \tag{1}
\end{equation*}
$$

If we assume a solution of the form

$$
\begin{equation*}
x(t)=y(t) e^{-\beta t} \tag{2}
\end{equation*}
$$

we have

$$
\left.\begin{array}{l}
\dot{x}=\dot{y} e^{-\beta t}-\beta y e^{-\beta t} \tag{3}\\
\ddot{x}=\ddot{y} e^{-\beta t}-2 \beta \dot{y} e^{-\beta t}+\beta^{2} y e^{-\beta t}
\end{array}\right]
$$

Substituting (3) into (1), we find

$$
\begin{equation*}
\ddot{y} e^{-\beta t}-2 \beta \dot{y} e^{-\beta t}+\beta^{2} y e^{-\beta t}+2 \beta \dot{y} e^{-\beta t}-2 \beta^{2} y e^{-\beta t}+\beta^{2} y e^{-\beta t}=0 \tag{4}
\end{equation*}
$$

or,

$$
\begin{equation*}
\ddot{y}=0 \tag{5}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
y(t)=A+B t \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
x(t)=(A+B t) e^{-\beta t} \tag{7}
\end{equation*}
$$

which is just Eq. (3.43).

3-14. For the case of overdamped oscillations, $x(t)$ and $\dot{x}(t)$ are expressed by

$$
\begin{gather*}
x(t)=e^{-\beta t}\left[A_{1} e^{\omega_{2} t}+A_{2} e^{-\omega_{2} t}\right] \tag{1}\\
\dot{x}(t) e^{-\beta t}\left[-\beta\left(A_{1} e^{\omega_{2} t}++A_{2} e^{-\omega_{2} t}\right)+\left(A_{1} \omega_{2} e^{\omega_{2} t}-A_{2} \omega_{2} e^{-\omega_{2} t}\right)\right] \tag{2}
\end{gather*}
$$

where $\omega_{2}=\sqrt{\beta^{2}-\omega_{0}^{2}}$. Hyperbolic functions are defined as

$$
\begin{equation*}
\cosh y=\frac{e^{y}+e^{-y}}{2}, \quad \sinh y=\frac{e^{y}-e^{-y}}{2} \tag{3}
\end{equation*}
$$

or,

$$
\left.\begin{array}{c}
e^{y}=\cosh y+\sinh y \tag{4}\\
e^{-y}=\cosh y-\sinh y
\end{array}\right]
$$

Using (4) to rewrite (1) and (2), we have

$$
\begin{equation*}
x(t)=(\cosh \beta t-\sinh \beta t)\left[\left(A_{1}+A_{2}\right) \cosh \omega_{2} t+\left(A_{1}-A_{2}\right) \sinh \omega_{2} t\right] \tag{5}
\end{equation*}
$$

and

$$
\begin{array}{r}
\dot{x}(t)=(\cosh \beta t-\sinh \beta t)\left[\left(A_{1} \omega_{2}-A_{1} \beta\right)\left(\cosh \omega_{2} t+\sinh \omega_{2} t\right)\right. \tag{6}\\
\left.-\left(A_{2} \beta+A_{2} \omega_{2}\right)\left(\cosh \omega_{2} t-\sinh \omega_{2} t\right)\right]
\end{array}
$$

