Row Reduction - Echelon Forms - Solutions to Linear Systems

1. Suppose a, b, c, and d are constants such the system

$$
\begin{aligned}
& a x_{1}+b x_{2}=0 \\
& c x_{1}+d x_{2}=0
\end{aligned}
$$

with $a \neq 0$. Using row reduction solve for x_{1} and x_{2} and list any constraints needed, on a, b, c, d, for unique solutions. ${ }^{1}$
2. Given the linear system

$$
\begin{aligned}
6 x_{1}+18 x_{2}-4 x_{3} & =20 \\
-x_{1}-3 x_{2}+8 x_{3} & =4 \\
5 x_{1}+15 x_{2}-9 x_{3} & =11
\end{aligned}
$$

Determine the general solution set to the linear system and describe this set geometrically. ${ }^{2}$
3. Determine the quadratic polynomial $p(t)=a_{0}+a_{1} t+a_{2} t^{2}$, which interpolates the data $(1,12),(2,15),(3,16)$. That is, determine a_{0}, a_{1}, a_{2} such that the following equations:

$$
\begin{align*}
a_{0}+a_{1}(1)+a_{2}(1)^{2} & =12 \tag{1}\\
a_{0}+a_{1}(2)+a_{2}(2)^{2} & =15 \tag{2}\\
a_{0}+a_{1}(3)+a_{2}(3)^{2} & =16 \tag{3}
\end{align*}
$$

are satisfied.
4. Given the following augmented matrix

$$
\left[\begin{array}{ll|l}
1 & 3 & 2 \\
3 & h & k
\end{array}\right]
$$

Determine h and k such that the corresponding linear system: ${ }^{3}$
(a) Is inconsistent.
(b) Is consistent with infinitely many solutions.
(c) Is consistent with a unique solution.
5. Given the matrix \mathbf{A} and the vector \mathbf{b}.

$$
\mathbf{A}=\left[\begin{array}{rr}
5 & 3 \\
-4 & 7 \\
9 & -2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
22 \\
20 \\
15
\end{array}\right]
$$

Are there constants x_{1} and x_{2} such that \mathbf{b} can be formed as a linear combination of the columns of \mathbf{A} ? If so then what are they? ${ }^{4}$

[^0]
[^0]: ${ }^{1}$ What we are trying to do here is find conditions on the coefficients a, b, c, d that will guarantee a single solution to the system. Remember that in 1 - D we require that to have a unique solution to, $a x=0, a$ must be different from zero.
 ${ }^{2}$ Another way to ask this: 'Are there a set of points in \mathbb{R}^{3} where the three previous planes intersect one another? If so, then what geometric object do the collection of these points form?' I hope that it is clear that if there a solution then these points could only form a point, line, or plane, depending on the number of free-variables you find by row-reduction.
 ${ }^{3}$ Hint: You will not need to find the reduced row-echelon form. Only the row-echelon form is needed.
 ${ }^{4}$ Another way of asking this: 'Is b a linear combination of the columns of \mathbf{A} ?'

