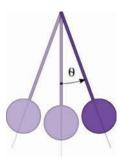
May 27, 2008 **Due Date**: May 29, 2008

Systems of First Order ODE s - Linear Equations - Real Eigenvalues - Phase Portraits

1. Suppose we have massless rod of length L, which is fixed to frictionlessly rotate about an endpoint with ridged mass m fixed at the other endpoint. Choosing the coordinate system depicted in the following diagram,



allows one to derive the following second-order differential equation, ¹

$$m\frac{d^2\theta}{dt^2} + b\frac{d\theta}{dt} + \frac{mg}{L}\sin(\theta) = f(t) \tag{1}$$

where the dependent variable θ measures the radial displacement from equilibrium as a function of time. ²

- (a) Using the substitution $\frac{d\theta}{dt} = \omega$ derive a system of first order ordinary differential equations, which models the displacement of the pendulum, from equilibrium, as a function of time.
- (b) Classify the type, order, and linearity of the previous system of differential equations.
- (c) Assuming that $\theta \ll 1$ and derive a linear system of differential equations, which models the motion of the pendulum.

2. Given,

$$\frac{dx}{dt} = x \tag{2}$$

$$\frac{dy}{dt} = -y \tag{3}$$

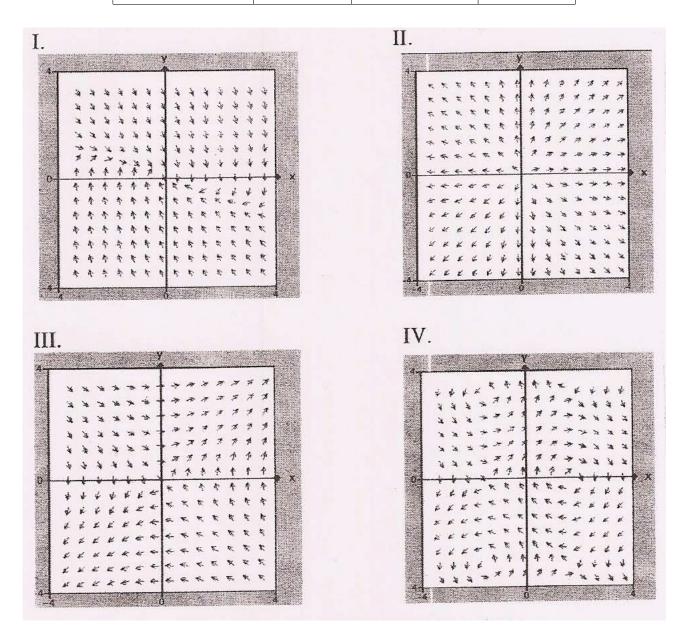
- (a) Using eigenvalues and eigenvectors, find the general solution of this system.
- (b) Graph, by hand, the phase portrait associated with the system and using HPGSYSTEMSOLVER check your work.
- (c) Find and classify any equilibrium solutions.
- (d) Noticing that the system is decoupled, solve each ODE by the methods of chapter 1 and show that this yields the same solution you found in part (a).
- 3. Given that $\frac{d\mathbf{Y}}{dt} = \mathbf{A}\mathbf{Y}$ where $\mathbf{A} = \begin{bmatrix} -1 & 2 \\ 0 & -3 \end{bmatrix}$.
 - (a) Find the general solution of this system.
 - (b) Using HPGSystemSolver plot the phase portrait and classify the equilibrium solution.

¹See chapter 5 of text for details.

²Similar to the ideal mass spring system from before we have $b \equiv \text{coefficient}$ of kinetic friction and $f(t) \equiv \text{applied}$ force.

5. Match the following systems with the corresponding direction fields.

(a)
$$\frac{dx}{dt} = y$$
 (b) $\frac{dx}{dt} = x$ (c) $\frac{dx}{dt} = \sin(y)$ (d) $\frac{dx}{dt} = y$ $\frac{dy}{dt} = -x - 3y$ $\frac{dy}{dt} = y$ $\frac{dy}{dt} = \cos(x)$ $\frac{dy}{dt} = x$



(i)
$$m \frac{d\theta}{dt^2} + b \frac{d\theta}{dt} + mg \cdot Sln(\theta) = f(t)$$

$$\frac{d\omega}{dt} = \frac{-b}{m} \omega + \frac{2}{3} \sin(\theta) + f(t)$$

$$\frac{d\theta}{dt} = \omega$$

$$\frac{d\theta}{dt} = \omega$$

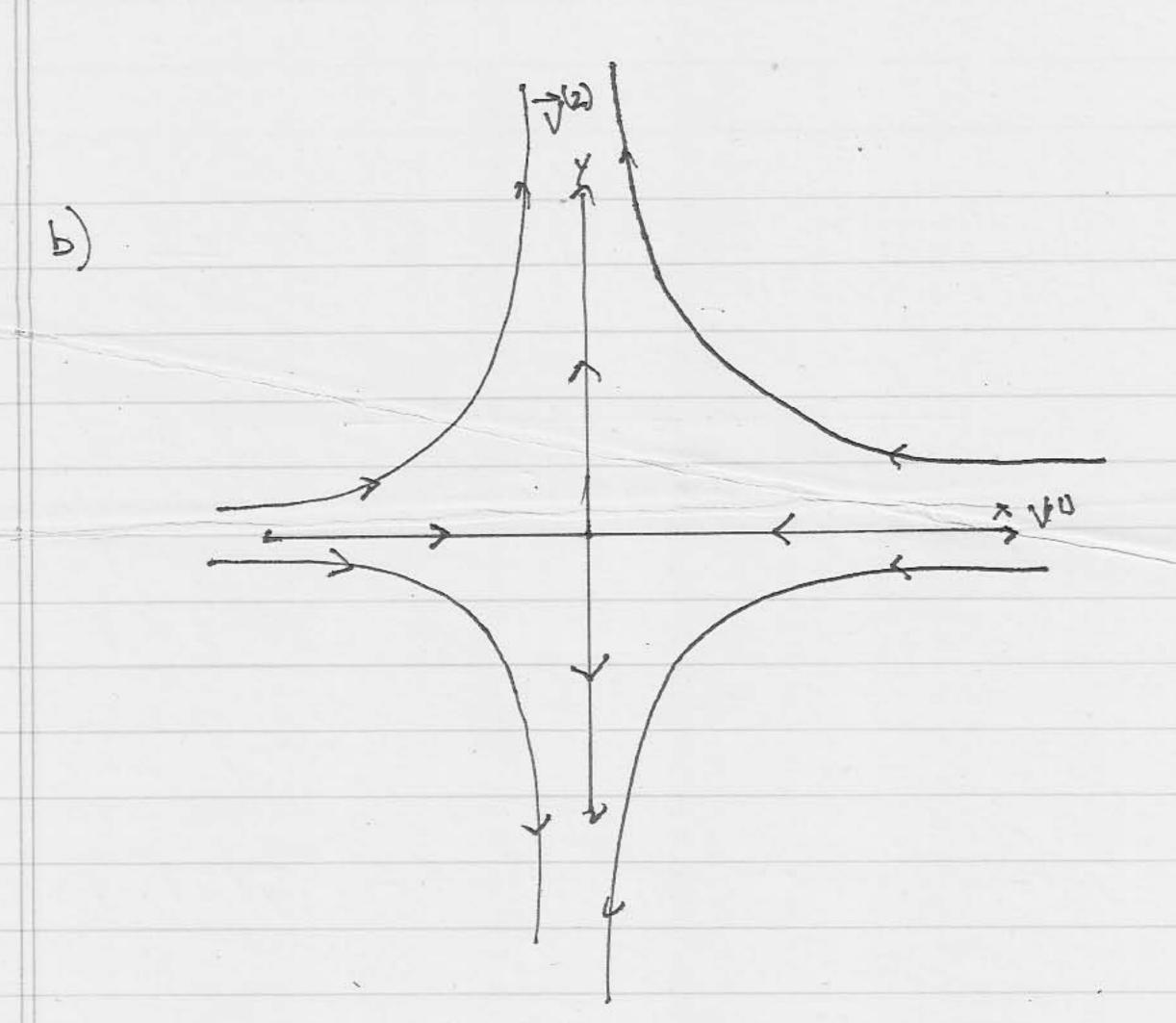
2)
$$\frac{dx}{dt} = x$$
, $\frac{dy}{dt} = y$ (=>) $\frac{d[x]}{dt[y]} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

$$(A - \lambda I) \vec{v} = \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad v_1 = 0 \quad \Rightarrow \quad \vec{v} = \begin{bmatrix} 0 \\ 0 & 0 \end{bmatrix}$$

$$v_2 = conglishing \quad \begin{bmatrix} 1 \\ 0 & 0 \end{bmatrix}$$

$$(A - \lambda I)\vec{v} = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

General Soli



c)
$$(0,0) = \begin{bmatrix} 0 \end{bmatrix}$$
 is a Soh to the problem.

This Equilibrium Soh is called a saddle node,

d)
$$dx = x \Rightarrow x(t) = k_1 e^t$$

$$dt \qquad \forall y(t) = k_2 e^t$$

$$dy = -y \Rightarrow y(t) = k_2 e^t$$

3)
$$\frac{\partial \overline{Y}}{\partial t} = AY = \begin{bmatrix} -1 & 2 \end{bmatrix} \begin{bmatrix} \chi(t) \end{bmatrix}$$

e)

$$det(A - \lambda I) = (-1 - \lambda)(-3 - \lambda) = 0 = \lambda_{z} = -1$$

 $\lambda_{z} = -3$

Case 1,=-1

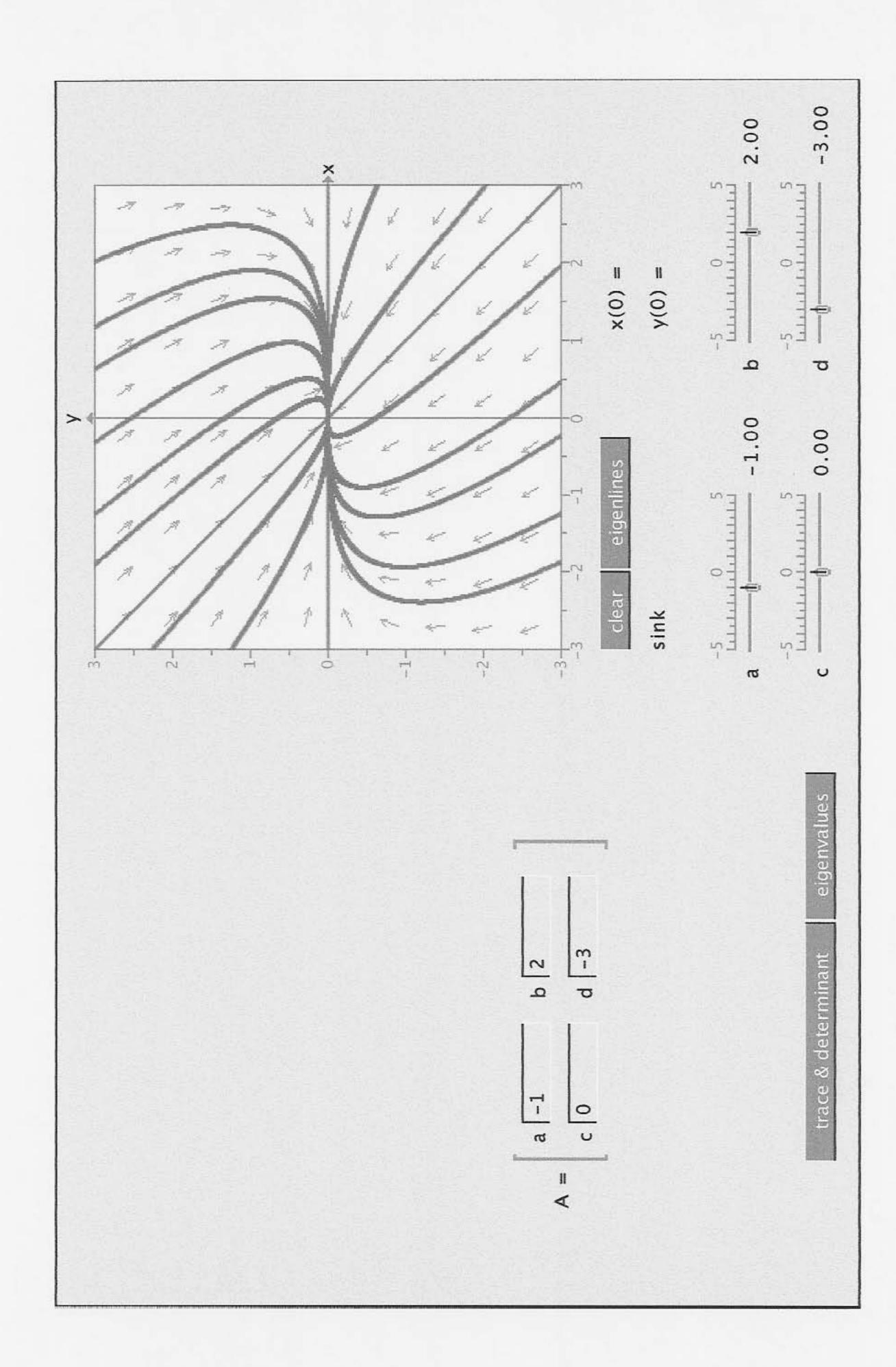
$$(A-\lambda I)\vec{v} = \begin{bmatrix} 0 & 2 & 1 \end{bmatrix} \vec{v}_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0 \quad \forall z = 0$$

$$v_1 = \alpha \text{ sign} \text{ but Zero.}$$

Case
$$\lambda = -3$$

$$\begin{bmatrix} \sqrt{3} & \sqrt{3} & \sqrt{3} \\ \sqrt{3} & \sqrt{3} \end{bmatrix}$$

General Sola



as $X \to 0^+$ the System has Eigenvalues (check!) $(3,0)^{\lambda_1=1}, \lambda_2=x, x>0$ Real Source

 $X \rightarrow 0^{-}$ the system has Eigenvalues $\lambda_1 = 1, \ \lambda_2 = x, \ x < 6$ =) (0,0) is a saddle.at x = 0 we have the following of phase portrait called a comb.

