Homework 7
PH462 EM Waves and Optical Physics
due 19 Oct. 2007
posted: 13 Oct. 2007

Reading: Heald and Marion (HM) chapter 8 and posted notes.

1) Griffiths problem 10.9. See following pages; read through example 10.2. First find the vector potential, then get the fields. You may find it helpful to use Mathematica to help with the integration.
2) HM problem 8-6
3) HM problem 8-7. Important note: there is a typo in the figure, and the angle q is supposed to be the angle between segments QP and PR.
4) HM problem 8-8. Mathematica will help. For the second part, let $\alpha=1-\beta$, and treat that as a small expansion parameter.
5) HM problem 8-10. The result is equation 8.97 . You may use mathematica to perform the integration.
6) HM problem 8-12.

Example 10.2
An infinite straight wire carries the current

$$
I(t)= \begin{cases}0, & \text { for } t \leq 0 \\ I_{0}, & \text { for } t>0\end{cases}
$$

That is, a constant current I_{0} is turned on abruptly at $t=0$. Find the resulting electric and magnetic fields.

Solution: The wire is presumably electrically neutral, so the scalar potential is zero. Let the wire lie along the z axis (Fig. 10.4); the retarded vector potential at point P is

$$
\mathbf{A}(s, t)=\frac{\mu_{0}}{4 \pi} \hat{\mathbf{z}} \int_{-\infty}^{\infty} \frac{I\left(t_{r}\right)}{r} d z .
$$

For $t<s / c$, the "news" has not yet reached P, and the potential is zero. For $t>s / c$, only
the segment the segment

$$
\begin{equation*}
|z| \leq \sqrt{(c t)^{2}-s^{2}} \tag{10.25}
\end{equation*}
$$

contributes (outside this range t_{r} is negative, so $I\left(t_{r}\right)=0$); thus

$$
\begin{aligned}
\mathbf{A}(s, t) & =\left(\frac{\mu_{0} I_{0}}{4 \pi} \hat{\mathbf{z}}\right) 2 \int_{0}^{\sqrt{(c t)^{2}-s^{2}}} \frac{d z}{\sqrt{s^{2}+z^{2}}} \\
& =\left.\frac{\mu_{0} I_{0}}{2 \pi} \hat{\mathbf{z}} \ln \left(\sqrt{s^{2}+z^{2}}+z\right)\right|_{0} ^{\sqrt{(c t)^{2}-s^{2}}}=\frac{\mu_{0} I_{0}}{2 \pi} \ln \left(\frac{c t+\sqrt{(c t)^{2}-s^{2}}}{s}\right) \hat{\mathbf{z}} .
\end{aligned}
$$

Figure 10.4

The electric field is

$$
\mathrm{E}(s, t)=-\frac{\partial \mathbf{A}}{\partial t}=-\frac{\mu_{0} I_{0} c}{2 \pi \sqrt{(c t)^{2}-s^{2}}} \hat{\mathbf{z}}
$$

and the magnetic field is

$$
\mathbf{B}(s, t)=\nabla \times \mathbf{A}=-\frac{\partial A_{z}}{\partial s} \hat{\phi}=\frac{\mu_{0} I_{0}}{2 \pi s} \frac{c t}{\sqrt{(c t)^{2}-s^{2}}} \hat{\phi} .
$$

Notice that as $t \rightarrow \infty$ we recover the static case: $\mathbf{E}=0, \mathbf{B}=\left(\mu_{0} I_{0} / 2 \pi s\right) \hat{\phi}$.
! Problem 10.8 Confirm that the retarded potentials satisfy the Lorentz gauge condition. [Hint: First show that

$$
\nabla \cdot\left(\frac{\mathbf{J}}{r}\right)=\frac{1}{r}(\nabla \cdot \mathbf{J})+\frac{1}{r}\left(\nabla^{\prime} \cdot \mathbf{J}\right)-\nabla^{\prime} \cdot\left(\frac{\mathbf{J}}{r}\right),
$$

where ∇ denotes derivatives with respect to \mathbf{r}, and ∇^{\prime} denotes derivatives with respect to \mathbf{r}^{\prime}. Next, noting that $\mathbf{J}\left(\mathbf{r}^{\prime}, t-r / c\right)$ depends on \mathbf{r}^{\prime} both explicitly and through r, whereas it depends on r only through r, confirm that

$$
\nabla \cdot \mathbf{J}=-\frac{1}{c} \dot{\mathbf{J}} \cdot(\nabla r), \quad \nabla^{\prime} \cdot \mathbf{J}=-\dot{\rho}-\frac{1}{c} \dot{\mathbf{J}} \cdot\left(\nabla^{\prime} \imath\right)
$$

Use this to calculate the divergence of \mathbf{A} (Eq. 10.19).]
: Problem 10.9
(a) Suppose the wire in Ex. 10.2 carries a linearly increasing current

$$
I(t)=k t
$$

for $t>0$. Find the electric and magnetic fields generated.
(b) Do the same for the case of a sudden burst of current:

$$
I(t)=q_{0} \delta(t)
$$

