Reading: Today: G 8.2
Tuesday: G9.1

$$
\begin{aligned}
\Rightarrow \rho \vec{E}+\vec{J} \times \vec{B} & =\epsilon_{0} \vec{E}(\vec{\nabla} \cdot \vec{E})-\frac{1}{\mu_{0}} \vec{B} \times(\vec{\nabla} \times \vec{B})-\epsilon_{0} \frac{\partial}{\partial t}(\vec{E} \times \vec{B}) \\
& -\epsilon_{0} \vec{E} \times(\vec{\nabla} \times \vec{E})+\frac{1}{\mu_{0}} \vec{B}(\vec{\nabla} \cdot \vec{B})
\end{aligned}
$$

Levi-Civita Density:

$$
\begin{aligned}
& E_{i j l}=0 \text { if, } i=j, i=k, \text { or } j=k . \\
&=1 \text { if } i=1, j=2, k=3 \text { or any even } \\
& \text { permutation of that. }
\end{aligned}
$$ permutation of that.

$=-1$ for odd permutations

$$
\begin{aligned}
& =-1 \text { for odd permutations } \\
& \vec{A} \times \vec{B} \mid=\sum_{i, k=1}^{3} \epsilon_{i j k} A_{j} B_{k} ; \vec{A} \cdot \vec{B}=\sum_{i, j=1}^{3} \delta_{i j} A_{i} B_{j} \\
& \vec{\nabla} \times\left.\vec{A}\right|_{i}=\sum_{j \cdot k=1}^{3} \epsilon_{i j k} \nabla_{j} A_{k} ; \vec{\nabla} \cdot \vec{A}=\sum_{i, j=1}^{3} \delta_{i j} O_{i} A_{j} \\
& \nabla_{1}=\frac{\partial}{\partial x}, Q_{i}=\frac{\partial}{\partial y}, \nabla_{3}=\frac{\partial}{\partial z}
\end{aligned}
$$

Einstein summation notation:
You sum over repeated indices over all possible indexes \{take out \sum symbols\}
It twins out that:

$$
\begin{aligned}
& \epsilon_{i j k} \epsilon_{i l m}=\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k l} \\
& \vec{A} \times\left.(\vec{B} \times \vec{C})\right|_{i}=\epsilon_{i j k} A_{j}\left(\epsilon_{k l m} B_{l} C_{m}\right) \epsilon_{i j l l} A_{j}\left(B_{k} \vec{C}\right)_{k} \\
&=\epsilon_{i j k} \epsilon_{k m m} A_{j} B_{l} C_{m} \\
&=\epsilon_{k i j} \epsilon_{k l m} A_{,} B_{l} C_{m} \\
&=\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) A_{j} B_{l} C_{m} \\
&=A_{j} B_{i} C_{j}-A_{j} B_{j} C_{i} \\
&=B_{i}\left(A_{j} C_{j}\right)-C_{i}\left(A_{j} B_{j}\right) \\
&\left.=\vec{B}(\vec{A} \cdot \vec{C}) I_{i}-\vec{C}(\vec{A} \cdot \vec{B})\right)_{i}
\end{aligned}
$$

$$
\epsilon_{i j k} \epsilon_{i l m}=\delta_{j k} \delta_{k m}-\delta_{j m} \delta_{k l}
$$

What is

$$
\begin{aligned}
& \vec{E} \times(\vec{V} \times \vec{E}) \text { (no os products in } \\
& \text { answer)? } \\
& E_{j} \nabla_{i} E_{j}-E_{j} \nabla_{j} E_{i} \\
& \frac{1}{2} \nabla_{i}\left(E_{j} E_{j}\right)=\frac{1}{2} E_{j} \nabla_{i} E_{j}+\frac{1}{2} E_{j} \nabla_{i} E_{j} \\
& \frac{1}{2} \nabla_{i}\left(E^{2}\right)-(E \cdot \bar{\nabla}) E_{i} \\
& \Rightarrow \vec{E} \times(\vec{\nabla} \times \vec{E})=\frac{1}{2} \vec{\nabla}\left(E^{2}\right)-(\vec{E} \cdot \vec{\nabla}) \vec{E} \\
& \Rightarrow \rho \vec{E}+\overrightarrow{\vec{F}} \times \vec{B}=\epsilon_{0} \vec{E}(\overrightarrow{\vec{b}} \cdot \overrightarrow{\vec{E}})-\frac{1}{\mu_{0}} \vec{B} \times(\overrightarrow{\vec{B}} \times \vec{B})-\epsilon_{0} \frac{\partial}{\partial t}(\vec{E} \times \vec{B}) \\
& -\epsilon_{6} \vec{E} \times(\vec{b} \times \vec{E})+\frac{1}{\mu_{0}} \vec{B}(\vec{\sigma} \cdot \vec{B}) \\
& \rho \vec{E}+\vec{J} \times \vec{B}=\epsilon_{0}[\vec{E}(\vec{O} \cdot \vec{E})+(\vec{E} \cdot \vec{V}) \vec{E}] \\
& +\frac{1}{\mu_{0}}[\vec{B}(\vec{F} \cdot \vec{B})+(\vec{B} \cdot \vec{B}) \vec{B}] \\
& -\vec{\nabla}\left[\frac{\epsilon_{0}}{2} \dot{E}^{2}+\frac{1}{2 \mu_{0}} B^{2}\right] \\
& -\epsilon_{0} \frac{\partial}{\partial t}(\vec{E} \times \vec{B})
\end{aligned}
$$

Define Stress Tensor

$$
\begin{aligned}
& T_{i j}=\epsilon_{0}\left[E_{i} E_{j}-\frac{1}{2} \delta_{i j} E^{2}\right]+\frac{1}{\mu_{0}}\left[B_{i} B_{j}-\frac{1}{2} \delta_{i j} B^{2}\right] \\
& {\left[\epsilon_{0}\left(\frac{1}{2} E_{2}^{2}-\frac{1}{2} E_{y}^{2}-\frac{1}{2} E_{z}^{2}\right) \quad E_{0} E_{x} E_{y}\right.} \\
& +\frac{1}{y_{0}}\left(\frac{1}{2} B_{1}^{2}-\frac{1}{2} 0_{y}^{2}-\frac{1}{2} Q_{2}^{2}\right)+\frac{1}{F_{0}} B_{0} B_{1} B y \\
& \begin{array}{lll}
t_{0} E_{y} E_{x} & \epsilon_{0}\left(-\frac{1}{2} E_{x}^{2}+\frac{1}{2} E_{y}^{2}-\frac{1}{2} E_{z}^{2}\right) & E_{0} E_{y} E_{z} \\
+\frac{1}{x} B_{0} B_{y} B_{x} & +\frac{1}{\mu_{0}}\left(-\frac{1}{2} B_{y}^{2}+\frac{1}{2} B_{y}^{2}-\frac{1}{2} B_{z}^{2}\right) & +\frac{1}{\mu_{0} B_{y} B_{z}}
\end{array} \\
& \epsilon_{0} E_{x} E_{x} \quad t_{0} E_{y} E_{z} \quad \epsilon_{0}\left(-\frac{1}{2} E_{x}^{2}-\frac{1}{2} E_{y}^{2}+\frac{1}{2} E_{i}^{2}\right) \\
& +\frac{1}{\mu_{0}} B_{2} B_{x} \\
& +\frac{1}{\mu_{0} B_{y} B_{z}} \quad+\frac{\epsilon_{0}}{\mu_{0}}\left(-\frac{1}{2} E_{2} B_{2}^{2}+\frac{1}{2} \hbar_{y}^{2}+\frac{1}{2} B_{z}^{2}\right)
\end{aligned}
$$

I cain the equation on the last page is actually
$T_{i j} d a_{j}$

$$
\begin{aligned}
\text { Say } d \vec{a}= & d x d y \hat{z} \\
\Rightarrow \vec{T} \cdot d \vec{a}= & T_{i z} d x d y \\
& =T_{x z} d x d y \hat{x} \\
& +T_{y z} d x d y \hat{y} \\
& +T_{z z} d x d y \hat{z}
\end{aligned}
$$

Title: Jun 30-6:49 PM (5 of 5)

