
MATH 235 - Differential Equations w/ Honors March 31, 2008
Homework 6, Spring 2008 Due: April 11, 2008

Second Order Linear ODEs - Oscillators
Exponential Forms - Power Series - Integral Transformations

1. Consider the following second-order linear ordinary differential equation with constant coefficients,

a
d2y

dt2
+ b

dy

dt
+ cy = f(t), a, b, c ∈ R. (1)

Solve (1) for the following cases, when possible solve for any unknown coefficients,

(a) a = 1, b = −2, c = −3, f(t) = 3e−t.

(b) a = 1, b = 4, c = 4, f(t) = 3e−t + t2.

(c) a = 1, b = −4, c = −13, f(t) = 0, subject to, y(0) = 1 and y′(0) = −1.

(d) a = 1, b = 0, c = 9, f(t) = 2 sin(2t).

(e) a = 1, b = 0, c = 9, f(t) = cos(3t).

2. Consider the ordinary differential equation:

y′′ − y = 0 (2)

We know that the general solution to this equation is y(t) = c1e
t + c2e

−t. It is common to write the solutions

to (2) in terms of the hyperbolic trigonometric functions, sinh(t) =
et − e−t

2
, cosh(t) =

et + e−t

2
.

(a) Show that y(t) = b1 sinh(t) + b2 cosh(t) is a solution to the differential equation (2).

(b) Show that if c1 =
b1 + b2

2
and c2 =

b1 − b2
2

then y(t) = c1e
t + c2e

−t = b1 cosh(t) + b2 sinh(t).

(c) Assume that y(t) =
∞∑

n=0

ant
n and find the general solution of (2) in terms of the hyperbolic sine and cosine

functions. 1

3. Recall the differential equation given by (1). For this equation we can define the Green’s function for the
differential equation as the function g, which satisfies the analogous differential equation, 2

a
d2g

dt2
+ b

dg

dt
+ cg = δ0(t), g(0) = 0, g′(0) = 0. (4)

Determine the Green’s functions to (1) for:3

(a) a = 1, b = −2, c = −3

(b) a = 1, b = 4, c = 4

(c) a = 1, b = −4, c = −13

(d) a = 1, b = 0, c = 9
1The hyperbolic sine and cosine have the following Taylor’s series representations centered about t = 0:

cosh(t) =
∞X

n=0

t2n

(2n)!
sinh(t) =

∞X
n=0

t2n+1

(2n + 1)!
(3)

2A Green’s function is a certain type of function used to solve nonhomogenous equations by considering the response of the system to a
primitive external impulse, i.e. the Dirac-Delta function, and then using the primitive response to construct solutions for more complicated
external forces. In physics Green’s functions are often called propagators. In statistics a Green’s function are often seen as correlation
functions used to describe relationships between random variables.

3To do this take the Laplace transform of (4), solve for G(s) and from G(s) use tables to determine g(t).
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4. Read the following websites,

• http://en.wikipedia.org/wiki/Laplace_transform - Read the introductory paragraph and skim the
examples.

• http://en.wikipedia.org/wiki/Convolution - Read the introductory paragraph, definition and appli-
cations.

• http://mathworld.wolfram.com/Convolution.html - Read through the paragraph after the animation.

and answer the following:

(a) Using the Laplace transform as an example, what is an integral transform and what are two reasons for
using integral transforms?

(b) List two examples of the application of Laplace transforms to linear dynamical systems. What is the benefit
of using the Laplace transforms for each case?

(c) What is the relationship between the output of a linear dynamic system and its forcing function?

(d) Considering the animation found on the mathworld site, when is the convolution of two Gaussian functions
at a maximum?

5. Consider the governing equation for a mass suspended from an ideal spring. Including forces due to friction,
and an external applied force, f(t), leads to the second order linear ordinary differential equations with constant
coefficients:

m
d2y

dt2
+ b

dy

dt
+ ky = f(t), m, b, k ∈ R+ ∪ {0}, (5)

(a) If b = 0 then the oscillator is called simple. Show that from the homogeneous (not forced) simple harmonic

oscillator one can derive the conservation law Etotal =
mv2

2
+
ky2

2
where v =

dy

dt
and Etotal is a constant.4

(b) Assume that m = k = 2 and graph the conservation law in the yv-plane for Etotal = 1, 4, 9. 5 6

(c) Show that, for an unforced simple harmonic oscillator, the that the solution can be written as yh(t) =
c1 cos(ω0t) + c2 sin(ω0t). Determine w0 in terms of m and k.

(d) Let f(t) = cos(αt), α ∈ R. Pick the form of the particular solution, yp(t), for the simple harmonic
oscillator. What happens when α = w0? Write down the functional form of the general solution for both
of these cases. (Do not solve for the undetermined coefficients)

(e) Consider the program BeatsAndResonance where a = 1.5.

i. Describe what happens to the general solution (green) as the circular frequency, ω, of forcing is changed
from 0.5 through 1.5. 7

ii. Describe the changes to the homogenous solution (blurple) and nonhomogenous solution (red), relative
to one another, as the frequency of forcing is changed from 0.5 through 1.5.

iii. If the energy of a single cycle of a sinusoidal-wave is proportional to the square of the amplitude then
compare the amount of energy in one beat envelope for when ω ≈ 0.5 to when ω ≈ 1.2. What happens
to the energy when ω ≈ 1.5?

4In physics one would call this conservation law a constant of motion.
5These constants of motion are nothing more than trajectories of the simple harmonic oscillator in the phase-plane.
6Recall that we derived the model equation for a mass-spring system appealing to the classical Newtonian physics. Considering micro-

scopic objects requires us to appeal to Schrodinger’s equation, the quantum analogue of Newton’s second law. In this framework we find
the same conservation law. However, since Schrodinger’s equation, under the harmonic oscillator potential, gives rise to Hermite’s equation
we have the extra consequence that the energy Etotal can only come in particular discrete/quantized values.

7You may find it useful to toggle the Envelope feature.
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